
1

1 INTRODUCTION
I do not consider myself an agile supporter; nor am I in favor
of heavy-weight methods. The true question to me is not
whether to be agile and which method is best, but rather
which is the most appropriate approach in a given situation. 

Four years ago, when we defined the PuLSE1 approach to
product line software engineering, we did not define it as a
fixed method, but rather we intended it to be a very flexible
and adaptable approach to product line engineering (cf.
Figure 1, [3]). In particular, this method introduces the
concept of a customization step; a step to define the actual
method instance to be applied [4].

Product line engineering [1, 2] is an approach to
systematically define a whole set of systems that are
developed in a systematic manner while exploiting reuse
opportunities on a large scale. How product line
development is performed will differ from organization to
organization. Actually, from an economic point of view, it is
important to adapt the approach to the specific situation at
hand [8]. However, it has been well demonstrated that this
approach provides immense benefits (in particular in terms
of cost) for software development.

The key idea of product line development is to build a set of
assets that can be used as a generic platform for all systems
an organization develops (cf. Figure 2). This development
happens in the domain engineering phase of product line
development. In particular in larger organizations this may
even be a different suborganization. A key asset in this phase
is the reference architecture. A common architecture that is
to be shared by all products in the product line. Based on
these common, product-line-specific components the final
products are developed. This happens in the application
engineering steps. In very large organizations, each of the
various application engineering projects can be run by
different organizations. 

As a product line needs to deal with a number of products
simultaneously, there is a strong need for systematicity in the
overall process. Moreover, the need to continuously trade off
between different products requires a strong discipline. For
this (and some other) reasons, product line development is
usually related with rather heavy-weight CMM-type
development.

When we defined PuLSE, we defined it as strongly
adaptable. Originally, we thought of it as being adaptable to
a large number of organizational context factors like existing
modeling methods, the distribution of the development team,
the existing tool environment, the need to do safety-critical
system, etc. In the mean-while we especially had the
opportunity to work together with small and medium-sized
companies and in particular small development groups in
larger companies [7]. Especially in those cases we found a
high degree of flexibility in the organizations, a virtue
necessary to be preserved. Especially in those cases we
found ourselves confronted with the question:

How much agility is compatible with product line devel-
opment?

We will now discuss the interrelation of product line
development and agile development values. As there is not a
specific description of what agile development is, we will
use the principles and values of the Manifesto for Agile
Software Development as our basis [5, 6].

2 The Agile Principles From A Product Line Point of 
View
From the point of view of a product line guy, we can find
good and bad — or perhaps better said: appropriate and
inappropriate — in the agile concepts. The main part of the
analysis is driven by the criterion that product line

1.PuLSE stands for Product Line Software Engineering and is a
registered trademark of the Fraunhofer IESE.

Customizing (BC)

PL
Infrastructure

Evolution
&

M
anagem

ent

PuLSE Initialization

PL
Infrastructure
Construction

PL Infrastructure
Usage

Scoping (Eco)

Modeling (CDA)

Architecting (DSSA)

Evolving & Mgmt. (EM)

Project Entry Points Maturity Scale Organization Issues

Support Components

Deployment Phases Technical Components

Instantiating (I)

Figure 1: PuLSE Overview

How Much Agility Do We Need? —
A View From A Product Line Perspective

Klaus Schmid
Fraunhofer Institute for Experimental

Software Engineering (IESE), Sauerwiesen 6
D-67661 Kaiserslautern, Germany
Klaus.Schmid@iese.fraunhofer.de



2

development is not focussed on a single customer, but rather
on developing value through addressing a larger customer
base, which, due to the incompatibility of some aspects can
imply to leave some customer requirements unsatisfied.

2.1 Values of Agile Development
The values of agile development can be regarded as a
cornerstone, a least common denominator of agile
development:

• Individuals and interactions over processes and tools
The importance of individuals in setting up product lines
is meanwhile more and more recognized; there is no
well-running product line that has not some visionary
person that made it start. However, there is a larger need
for processes than with single-system development due
to the fact that the complexity of software development is
usually larger as more people are involved. Moreover,
the separation of domain engineering and application
engineering demands clear hand-over points.

• Working software over comprehensive documentation
Again we see the same picture; while the basic principle
is compatible with product line development, it is shifted
a bit towards the traditional style. Key here is the fact that
even in cases where the individual product is short lived,
the product line is always long-lived. It needs to be main-
tained over years and stand a considerable amount of
people turn-over.

• Customer collaboration over contract negotiation
Here a serious shift happens in a product line situation, as
the value of customer collaboration is definitely smaller.
Moreover, a well-known problem in product line devel-
opment is the “danger of the first customer”: focussing
too strongly on the requirements of the first customer
may endanger the product line vision right from the start.

While the customer is very important in a product line,
focussing to strongly on his specific requirements may
easily destroy the conceptual integrity of the product line
and the resulting product line architecture will no longer
scale to the needs of future products.

• Responding to change over following a plan
This is very similar to the previous one. Responding to
change to strongly, especially if it is a single-customer
need may easily dilute the concept of the product line.
Moreover, changes done to the product line, which are
triggered by one customer, may effect by virtue of the
common assets other customers as well: an issue that
needs to be addressed by adequate planning and analysis.

2.2 Additional Values of Product Line Development
Based on the above discussion we find that some aspects are
different in a product line situation over the typical
assumptions in agile projects.

• Usually requirements put forward by different customers
are mutually exclusive. Thus they need to be thoroughly
weighted in the product line development process:

Balancing the needs of the various customers is more 
important than focussing on a single products.

• Product line development is rather long-lived. This needs
to be adequately addressed by the supporting processes
and documentation.

Sustaining the product line is more important than get-
ting the current product out of the door.

• Underlying to the product line there are conceptual prin-
ciples that should be obeyed as otherwise the product line
as a whole is at risk: 

Figure 2: PL Engineering

Application Engineering nApplication Engineering n

Application Engineering 2Application Engineering 2

Domain EngineeringDomain Engineering

Product Line
Analysis

Product 
Line

Architecture

Development of PL
Components

Application Engineering 1Application Engineering 1

New Product
Requirements

New 
system

Product
Specification

Product
Architecture

Product 
Implementation

New Product
Requirements

New 
system

Product
Specification

Product
Architecture

Product 
Implementation

Product Line
Information

Components & 
other assets

Reference
specification

Reference Architecture
ComponentsN

ew
 R

equirem
ents

Components
ArchitecturePL-Specification

Infrastructure



3

Conceptual integrity of the product line is more impor-
tant than technical beauty of a single product.

We can summarize these product line values by the
following principle:

We value the product line higher than
the individual product.

3 Conclusion
Product lines is somewhat different from single-system
development, the usual working place of agile
methodologies. This is reflected in somewhat different
interpretations of the agile values. Moreover, the focus on
product line development adds another value that needs to
addressed in decision making.

All this said, the core question remains: how much agility is
needed in a product line situation. We answered this by
focusing on values and trade-offs in the tradition of the agile
manifesto. This leads us to look at the specific situation and
perform a situation-specific trade-off.

This is very similar to the situation for which the PuLSE-BC
approach was originally intended: for adapting a software
development method. we see the possibility of using a
similar approach to adapt the specific agile approach to the
organization, perhaps introducing agile principles just to the
right degree adapted to the situation.

REFERENCES
1. Paul Clements and Linda Northrop. Software Product 

Lines. Addison-Wesley. 2001.
2. Jan Bosch. Design and Use of Software Architectures. 

Addison-Wesley. 2000.
3. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. 

Schmid, T. Widen, J.-M. DeBaud. PuLSE: A Methodol-
ogy to Develop Software Product Lines, Symposium on 
Software Reusability, 1999, ACM Press, pp. 122–131.

4. Klaus Schmid and Tanya Widen. Customizing the PuLSE 
Product Line Approach to the Demands of an Organiza-
tion. Software Process Technology, 7th European Work-
shop, EWSPT'2000, LNCS 1780, Springer, 2000, pp. 
221–238.

5. Manifesto for Agile Software Development. http://agile-
manifesto.org/

6. Jonna Kalermo and Jenni Rissanen. Agile software devel-
opment in theory and practice. Master thesis, University 
of Jyväskylä.

7. P. Knauber, D. Muthig, K. Schmid, and T. Widen. Apply-
ing Product Line Concepts in Small- and Medium-Sized 
Companies. IEEE Software, Vol. 17, No. 5, 2000, pp. 88–
95.

8. Klaus Schmid and Martin Verlage, The Economic Impact 
of Product Line Adoption and Evolution, IEEE Software, 
Vol. 19, No. 6, 2002, pp. 50–57.


