
Commonalities of Agile Methodologies
Pete McBreen’s position paper

Market Positioning - starting with a smile
A commonality I note between all of the agile methods is that they are trying to position themselves into a
different space than both the Unified Process and Extreme Programming. This has been a massive
challenge for the agile methods because of the massive amount of coverage that the Unified Method has
been getting from the UML world and the grassroots awareness of Extreme Programming.

In effect, the label “agile method” is an attempt to create a distinction between these methods and UP/XP,
when both UP and XP are both applicable in roughly the same methodology space as the agile methods.
Having to position themselves as Not-UP and Not-XP has made it harder for these agile methods to
achieve very widespread usage.

DSDM is an exception to this generalization, one possible explanation is that because DSDM predates
XP, it achieved popularity by occupying the not-heavyweight, not-overkill process space that XP now
dominates.

Radically Incremental Development
All of the Agile approaches practice incremental requirements capture. This means that a subset of
application functionality can be released before the details of all of the requirements are known. Although
the Agile approaches share this practice with the Unified Process, it is practiced more aggressively in the
Agile methods.

The Agile methods expect the design of the application to evolve as new feature are identified, included
into the requirement set and eventually implemented. This makes organizations that are more used to a
waterfall style of development very uncomfortable.

Some developers have a hard time with this type of incremental development because they want to know
exactly what it is they are supposed to be building before they start doing any design work.

Dancing on the edge of uncertainty
The agile methods seem to be taking the position that “even if it were possible to fully define an
application up front, it would still be better to work as if the requirements were emergent.” The idea being
that some aspects of software development are unknown and unknowable early in a project and that this is
a good thing.

Embracing this uncertainty is a common theme in all of the agile methods.

Finding room for the generalist
Agile methods have fewer roles than the more traditional processes. This means that the agile methods
support the idea of a generalist that has a greater involvement in the complete project compared to the
specialist roles defined in traditional processes.

Although the different agile methods use different names for this “just a programmer” and “minimizing
handoffs” the intention is to improve overall involvement in, and commitment to, the complete project.

Human scale software development
All of the agile methods seem to accept the idea that it is much better to have small, social teams that
interact on a daily basis. In effect, they all attempt to build a close knit community around the project.



Ideally this community involves both the developers and the key business users. Scrum even goes as far as
telling stores about those who are truly committed as opposed to those who are merely involved “a pig and
a chicken agree to set up a restaurant...”

An interesting side effect of this community building is that it is hard to do a low involvement agile
process.

Making life hell for the Quality Assurance specialist
Agile methods by their very nature require a different form of quality assurance. Traditional quality
assurance procedures are much less relevant because an agile process leaves much less of a paper trail
than a traditional process. After all, how can the QA specialist compare the application to the documented
requirements, when the written requirements are “just a promise for a future conversation”?

Agile methods all make the key business users a very strong partner in assuring quality. Rather than
leaving quality to the professionals, agile projects make these key users responsible for ensuring that the
application is fit for purpose.


