
My experience in Agile processes is twofold – Scrum and the standard startup/dot.com method of
none (which you could also name “punt,” “wing-it,” and “the abyss”). As such, I will briefly talk about
Scrum and XP, then describe what I feel to be the challenge to process, agile or otherwise. While many
consider these two agile processes to be complimentary, I find XP makes a good basis for comparison.

I believe that some interesting points of the Agile Manifesto are:

1) Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

2) Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference for the shorter time scale.

3) Simplicity--the art of maximizing the amount of work not done--is essential.

Both Scrum and XP support time-boxing and iterative development cycles (called sprints in
Scrum), that allow the developers to focus on a fixed set of requirements (supporting point 2 above).
Because it is time-boxed, the deadline is the most important criterion, and both processes allow the
developers to drop or simplify features so that they may complete the deliverable on time. Yet the two
processes begin to differ at this point. XP is somewhat free-formed, allowing the developers to address
new issues or requirements on the fly. In fact, XP advocates involving the customer in these cycles, so it is
quite likely that requirements will become more clear or even change in the middle of the cycle. Scrum, on
the other hand, prohibits the introduction from the outside of new features in the middle of a cycle (any rule
can of course be broken when the when the situation warrants). Developers can factor in new requirements
at the start of the next cycle, which because the cycles are short, doesn’t cause long delays. The purpose of
this practice is to ensure that the delivery is on time, and to prevent feature creep.

It is this third feature, maximizing the amount of work not done, that I find critical to successful
development. Simplicity (an XP concept) in design can be quite liberating, freeing developers to produce
quality software quickly. Simplicity entails designing a robust system, while avoiding the tendency to
over-engineer a product to handle every situation that someone conceives that can possibly happen.
Otherwise, developers are continually thinking about “how to make the product better and more robust”,
and “what if this situation ever occurs,”- but simplicity is merely a concept. Scrum goes one step further
and reinforces this philosophy by freezing the sprint’s contents, effectively limiting these “enhancements,”
and hopefully forcing the developers to consider whether some particular new feature actually belongs in a
subsequent load or not.

It is precisely these little “enhancements” that cause so much trouble. My experience in the
startup environment leads me to believe that many developers misuse the term “Agile” to describe any
lightweight development style that is not overly restrictive. Unfortunately, the procedure they describe
isn’t a bona fide process. They may support iterative development (point 2), but often the first deliverable
is more akin to the complete product rather than a unified portion. Their development methodology
supports last minute requirements (point 1), without defining a method to minimize the amount of work it
entails (point 3). As with any other project, the requirements are poorly defined, but without a system of
checks and balances, such as Scrum or XP, these organizations tend to treat time as the primary factor to
consider when deciding whether to implement a feature – i.e. we have two weeks left, that should be
enough. In this environment, developers often make snap decisions on how to handle a particular situation
without fully considering the effects on others. I have often noticed that a “small” feature that was thrown
in the mix to solve a small problem gains a life of its own, and grows to require much of the development
time of future cycles.

Competitive pressures, especially the “time-to-market” myth, have led many companies to abuse
time-boxing – throwing together something that works, without spending the time to craft it, or plan for the
future. Time-to-market is important, as small companies that don’t get something done quickly don’t last.
But that isn’t sufficient! Companies that do get their products to market are finding themselves struggling
with issues of scalability and adaptability. Their product might work exceedingly well for some number of
users, but not to the magnitude that customers expect. Having thrown together a quick solution,
companies are finding poorly designed systems that prove resistant to change. And customers aren’t
buying these products for these reasons.

Other than the resulting human misery, I think the tragedy of the dot com era was the assault on
software process, agile or otherwise. Had many of these companies continued to the next phase of
development, I am convinced that we would have heard a lot more on the need for truly following an agile
process. Instead, we have a new generation of software developers who think that processes is archaic;
they feel that they wrote truly great software, but were the victims of the internet bubble collapsing.

Paul Bramble is a Senior Software Engineer with Emperative, Inc., and specializes in Object-Oriented
Software Development. He is the co-author of the book “Patterns for Effective Use Cases, and is teaching
a tutorial on this subject at OOPSLA 2002. He has more than 20 years of software development
experience, including telecommunications, avionics, operating systems, mainframe computer
manufacturing, and e-commerce systems for several different organizations. Paul received his MS degree in
Computer Science from Arizona State University in 1989, designing portions of an Object-Oriented
distributed operating system for his master’s thesis.

