
Position Paper for the OOPSLA 2003 Workshop
“Commonalities of Agile Methodologies”

Human Issues in Agile Processes
Looking at the different agile methods from a systems thinking perspective, there is one impor-
tant observation you can make for all of them. They all concentrate on establishing feedback
loops rather than trying to predict the project right from the beginning. Some examples of feed-
back loops are:
• Regular meetings or workshops to establish the scope for the next chunk of work together 

with the client (e.g. Sprint Planning Meeting in Scrum, Planning Game in XP, Product-Tun-
ing Workshops in Crystal Clear, Project Reviews in DSDM)

• Regular events to adjust the methodology (e.g. Learning Sessions in ASD, Methodology-
Tuning Workshops in all Crystal Methods)

• Technical feedback loops to determine the progress of the work (e.g. Test Cases in XP, 
Automated Tests in Crystal Clear)

All of these feedback loops have in common that they don’t measure the progress of the project
against a given target, such as a plan. Rather these loops are un-biased measurements of the cur-
rent state of the project. This reflects the approach of agile development to „control the devel-
opment of software by making many small adjustments, not by making a few large adjustments“
like Kent Beck puts it.
It is one of the general ideas of management driven by systems thinking that it is usually wiser
to control a complex system, such as a project, not by trying to predict it’s outcome and react on
divergence from a given target but by understanding the underlying dynamics and trying to push
the „small lever to move the world“, adjustments that have a multiplying (or to be precise „non-
linear“) effect on the outcome. I want to explore this idea a little bit deeper discussing the Au-
tomated Tests loop.
The following diagram shows a „classic“ view on fixing bugs: As you implement your software
you inevitably make mistakes which sneak as undetected bugs into your product. To detect these
bugs you use testing, which tries to uncover as many bugs as possible. As soon as a bug is
known, someone in the teams has to fix it during debugging. In this model, there are only linear
dependencies: The time the whole process needs seems to depend linearly on a set of factors,
such as number of bugs you pipe in (implementation quality), testing productivity, and debug-
ging productivity. Classic processes try influence these factors by measures to avoid mistakes
such as up-front analysis, up-front design, and reviews, and measures that try to raise produc-
tivity, usually using the inadequate tool of overtime. 

Jens Coldewey
Coldewey Consulting
Curd-Jürgens-Str. 4
D-81739 München

Germany
Tel: +49-700-26533939
Fax: +49-89-74995703

email: jens_coldewey@acm.org
http://www.coldewey.com

Undetected Bugs Known Bugs Fixed Bugs
Testing DebuggingImplementation



Often enough this approach fails. The reason is that this model ignores a small but important
detail: It is not only implementation that produces bugs, but any programming activity. Partic-
ularly debugging is error prone, if the programmers are not used to change existing code without
screwing it up. The next figure shows a more complete model of this process:

This feedback is a destabilizing loop as depicted by the little avalanche icon. These loops are
non-linear, as the graph below shows. This graph is the result of a set of simulations done on a
simplified system dynamics model of a project. If you introduce a new bug with every second
bug fix, the test duration doubles. If your rate is even worse, the test duration starts to escalate,
the project suffers from severe overrun and eventually crashes. Automated Testing concentrates
on the non-linear feedback loop in the model. It reduces the relative number of bugs introduced
during debugging. The strategy used ensures, that this „evil“ factor decreases over project time
rather than ignoring it — the surest strategy to experience a blow-up. Instead of using compli-
cated and expensive efforts to control the linear factors, it uses a cheap and pragmatic technique
to control the non-linear feedback loops.

This is a general strategy common to all agile methodologies. Understandings these strategies
might help to understand why agile development works despite of it’s sometimes radical neglect
of traditional techniques of software engineering.

Undetected Bugs Known Bugs Fixed Bugs
Testing DebuggingImplementation

Relative # of bugs
introduced during

debugging

Relative Delay of Testing by Bugs Introduced During Debugging

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00
18,00
20,00

0 0,2 0,4 0,6 0,8 1

Relative # of Bugs Introduced During Debugging

R
el

at
iv

e 
Te

st
 D

ur
at

io
n


