Process Patterns for Small Systems

UNTITLED by Weir, Noble

Process Patterns for Small Systems

Charles Weir and James Noble 1997-2000.

These patterns are part of an ongoing project to capture and document techniques for the design and construction of systems that must function under tight memory constraints. The patterns will be published in book form in the Addison-Wesley Software Patterns Series in 2000.

This paper contains the following patterns:

· Thinking Small

· Memory Budget

· Featurectomy

Related patterns have appeared in several conferences, including:

1. High-level and Process Patterns from the Memory Protection Society. James Noble and Charles Weir. In Pattern Languages of Program Design 4. Neil Harrison, Brian Foote and Hans Rohnert, editors. Addison-Wesley, 1999.

2. Patterns for Small Machines. James Noble and Charles Weir. Proceedings of the European Conference on Pattern Languages of Program Design, Irsee, Germany. Universitäts Verlag Konstanz. 1998

3. Secondary Storage. Proceedings of the European Conference on Pattern Languages of Program Design, Irsee, Germany. Universitäts Verlag Konstanz. 1999

Further information about this project can be found on the web at: http://www.cix.co.uk/~cweir/Book/DraftChapters.htm

Major Technique: Thinking Small

Version 04/12/99 16:59 - 40
A.k.a Small methodology, ‘Real’ programming.
How should you approach a small system?

· You’re developing a system that will be memory-constrained.

· There are many competing constraints to satisfy

· If different developers take different views on which things to optimise, they will produce an inconsistent system that satisfies none of the constraints.

You're working on a project and you suspect there will be resource limitations in the target system. For example, the developers of the ‘Super-spy 007’ version for the Strap-it-On wrist-mounted computer face a system with only 200 Kb of RAM and 2 Mb ROM. How are they to adjudicate the demands of the voice recognition software, the vocabularies and the software-based radio, to make it a secret agent's dream toy? Should they store the vocabularies in ROM to save RAM space, or keep them in RAM to allow them to change from Russian to Arabic on the fly? What, in short, is important in their system, and what is less so?

In many projects it’s clear from the outset that the development team will have to spend at least some time and effort satisfying the system’s memory limitations. You have to cut your coat to fit your cloth. Yet if the team just spends lots of effort optimising everything to work in very limited memory, they'll waste a lot of time or maybe produce a product that could have been much better. Worse still the product may fail to work at all because they have been optimising the wrong thing.

For example, any of the following facilities may be limited:

· Heap (RAM) space for the whole system

· Heap space for individual processes (if the maximum heap size of a process is fixed)

· Process stack size

· Secondary storage use

· ROM space (for programs that execute from ROM)

Optimising one of these will often be at a cost from one of the others. In addition techniques that optimise memory use will tend to compromise time-performance, usability or both.

In any system the architects will have to moderate the demands of different components in the system against each other. That is a big and highly sensitive task. Software programmers tend to take their design decisions seriously, so capricious decisions can cause friction or worse within a development team.

You might hope to use clever techniques to defer the key decisions about these priorities until later in the project, when you’ll know more about the implementation. But in practice many of the most important strategic decisions cannot be deferred, as they pervade the entire system and provide a framework for later decisions. Such strategic decisions are reflected, for example, in the interfaces between components, in the trade-off between ROM and RAM, and in the question of whether or not to use Partial Failure in components.

Design decisions about the trade-offs based on just individual designers' foibles, on gut feel or on who shouts loudest will lead neither to consistent successful designs, nor to a harmonious development. You'll need a more objective approach.

Therefore: Devise a memory strategy for the entire project.
First draw up a crude Memory Budget of the likely available resources in each of the categories above. If the figures are flexible (for example, if the system is to run on standard PCs with variable configurations and other applications), then estimate or negotiate target values with clients. Meanwhile, also estimate very approximately the likely memory needs of the system you're developing. Identify the tensions between the two. Identify the design decisions that will significantly challenge the memory use, and ensure these decisions happen early.

Based on this comparison you'll be in a position to identify which constraints are most vital. It may be a constraint on one of the forms of memory in the system. Other constraints – time constraints, reliability, usability – may also be as or more important.

Enshrine these priorities as a core ‘given’ for everyone working on the project. Ensure that absolutely everyone working on the team understands the priorities. Write the strategy in a document; make presentations; distribute the T-shirt! Indoctrinate each new developer who joins the team afterwards with the same priorities.

Once you’ve identified your priorities, you’ll be in a position to plan how to approach the rest of the project. You may need a formal Memory Budget, or perhaps Memory Tracking. Or you may choose to leave Memory Optimisation until near the end of the project. Depending on the nature of the system, you may need to plan for Exhaustion Testing, or assign time to Plug the Leaks.

For example, the developers of the ‘Super-spy 007’ decided the important priority was the constraint on RAM, since RAM memory provided the only storage – and a reset might then erase vital information about the Master Villain’s plans to destroy the world! The next priority was user response (to give a quick response in dangerous situations). So the components and interfaces are designed to minimise this memory use, and then to give reasonable user response.

Consequences

Every member of the team will understand the priorities. Individual designers will be able to make their own decisions knowing that the decisions will fit within the wider context of the project. Design decisions by different teams will be consistent, adding to the coherence of the system developed.

You can estimate the impact of the memory constraints on project timescales, reducing the uncertainty of the project.

The initial estimates of memory needs can provide a basis for a more formal memory budget for the project.

However: Deciding the strategy takes time and effort at an important stage of a project.

Sometimes later design decisions, functionality changes, or hardware modifications may modify the strategy; this invalidates the earlier design decisions, so might leave the project in a worse position than if individuals had taken random decisions.

Implementation Notes

Sometimes it’s not necessary to make the strategy explicit. Many projects work in a well-understood context. For example an MS-Windows 'shrink-wrapped' application can assume a total system size of more than 12Mb RAM (and more than 30Mb paged memory), about 50Mb disk and program space – as we can deduce by studying any number of ‘industry standard’ applications.

So MS Windows developers share an unwritten understanding of the memory requirements of a typical program. The strategy of all these Windows applications and the trade-offs will tend to be similar, and these are often encapsulated in the libraries and development environments or in the standard literature. Given this ‘implicit strategy’ it may be less necessary to define an explicit one; any programmer who has worked on a similar project or read up the literature will unconsciously choose appropriate trade-offs.

However having an implicit strategy for all applications can cause designers and programmers to overlook lesser but still significant variations in a specific project. For example a Windows photograph editor will randomly access large amounts of memory. So it may have to assume (and explicitly demand) rather more real, rather than paged, memory than other 'standard' applications.

Developers from Different Environments

Programmers and designers used to one strategy often have very great difficulty changing to a different one. For example, many MS Windows programmers coming to the EPOC or Palm operating systems have great difficulty internalising the idea that programs must run indefinitely even if there’s a possibility of running out of memory. Windows CE developers have even more of a problem with this, as the environment is superficially similar to normal Windows.

Yet if such programmers continue to program in their former ‘large workstation’ paradigms, the resulting code has poor quality, and often doesn’t satisfy user needs. The developers need to adapt to the new strategies.

One excellent way to promote such ‘Thinking Small’ is to exaggerate the problem. Emphasise the smallness of the system. Make all the developers imagine the system is smaller than it is! And encourage every team member to keep a very tight control on the memory use. Ensure that each programmer knows which coding techniques are efficient in terms of memory, and which are wasteful. You can use design and code reviews to exorcise wasteful features, habits and techniques.

In this way you can develop a culture where memory saving is a habit. Wonderful!

Guidelines for Small System Development

The following are some principles for designing memory limited software:

Design small, code small
You need to build in memory saving into the design as well as into the code of individual components. The design provides much more scope for memory saving than code.

Create bounds
Avoid unbounded memory use. Unlimited recursion, or algorithms without a limit on their memory use, will almost certainly eventually cause irritating or fatal system defects.

Design for the default case
It’s always tempting to design your standard object data structures to handle every possible case. But this approach tends to waste memory. It’s better to design objects so that their default data structure handles only the simplest case, and have extension objects [Beck ?] to handle special cases.

Minimise lifetimes
Heap- and stack- based objects cease to take up memory when they’re deleted. You can save significant memory by ensuring that this happens as early as possible [KenA list in Cacheable Expression]

Extreme vs. Traditional Projects

There are many different styles for teams working on software development. To highlight some of the differences, we’ll contrast two opposing styles: ‘Traditional Development’ and ‘Extreme Programming’.

Traditional development [Gilb], [DeMarco] derives its processes and targets from the project controlling techniques used successfully in other engineering disciplines. Each developer is responsible for there own areas of code. A project starts with the team agreeing or receiving a set of specifications from clients at the start of the project – typically as a Functional Specification document. If the project is large enough, a design team will next decide on the architecture and specify the software components for the system. Then separate teams will work on written designs for each component and for the interfaces between them. Finally each team works separately on implementing each component, usually with each programmer responsible for a section of the code and functionality. Either the component programmers or a different team will be responsible for component testing, and then for system testing. Finally the system is ‘released’ and shipped to the customer, followed by either new projects to modify the functionality, or ‘maintenance’ to fix defects and shortcomings as required.

In the ‘Extreme Programming’ style of development, there is a single development team of up to about twelve programmers. Development works in short cycles of a week or so, each cycle culminating in a release – which may potentially be shipped to a customer. The team interacts strongly with their customer to develop only the most important features in each cycle. Programmers always work in pairs, develop complete test code before any implementation, have a strong emphasis on ‘refactoring’ existing code to satisfy new requirements, and eschew formal design documentation.

One might compare the two approaches to two different ways of house building. A property speculator will create a building by hiring a number of professionals, and arranging for the design to be done first, the builders to ready at the right time to start, the plumbers to be available when the builders have finished the shell, etc.

Extreme programming is more like a couple building their own house. They create the shell, make one room liveable, and take on new projects to improve their facilities and add new rooms when time and money permit.

 [Insert here. How you use the patterns in a traditional project. How you use the patterns in an Extreme Project. Get feedback from Kent Beck.]

In a traditional project the architectural strategy is a part of the architect’s Vision [?ref. JD?].

In an XP project, the strategy will best be reflected in the project ‘metaphor’. [XP ?Wiki]. Individual memory constraints are reflected as ‘stories’, which become test cases that every future system enhancement must support.

Specialised Patterns

The rest of this chapter introduces six further ‘process patterns’ commonly used in organising projects with limited memory. Process patterns differ from design patterns in that they describe what you do – the process you go through – rather than the end result.

These patterns apply to virtually all small memory projects, from one-person developments to vast systems involving many teams of developers scattered worldwide. Throughout this chapter we’ll use the phrase ‘development teams’ to mean ‘all of the people working on the project’. If you’re working alone, you should read this as referring to yourself alone; if a single team, then it refers to just that team; if a large project, it refers to all the teams.

Equally, the patterns themselves work at various levels of a project’s organisation. Suppose you’re working on the implementation of the Strap-It-OnTM wristwatch computer. The overall project designers (‘system architecture team’) will use each pattern to examine the interworking of all the components in the system. Each separate development team can use the patterns to control their implementation of their specific component, working within the parameters and constraints defined by the system architecture team.

The patterns are as follows:

Memory Budget
How do you keep control in a project where memory is very tight? Draw up a memory budget, and plan the memory use of each component in the system.

Featurectomy
How do you ensure you have an implementable set of system requirements given the system restraints? Negotiate with the clients, users and requirements specification teams to produce a specification to satisfy both users needs and the system’s memory constraints.

Memory Tracking
How do you find out if the implementation you’re working on will satisfy your memory requirements? Track the memory use of each release of the system, and ensure that every developer is aware of the current score

Memory Optimisation
How do you stop memory constraints dominating the design process to the detriment of other requirements? Implement the system, paying attention to memory requirements only where these have a significant effect on the design. Once the system is working, identify the most wasteful areas and optimise their memory use.

Plugging the Leaks
How do you ensure your program recycles memory efficiently? Test your system for memory leakage and fix the leaks.

Exhaustion Test
How do you ensure that your programs work correctly in out of memory conditions? Use testing techniques that simulate memory exhaustion.

[image: image1.wmf]Program

Chaining

Think Small

Memory Budget

Featurectomy

Memory

Tracking

Exhaustion Test

Memory

Performance

Assessment

Plugging the

Leaks

Figure 1: Process Pattern Relationships

Known Uses

The EPOC operating system is ported to many different telephone hardware platforms; each has a different configuration of ROM, RAM and Flash (persistent) memory. So each environment has a different trade-off and application strategy. Some have virtually unlimited non-persistent RAM; others (such as the Psion Series 5) use their RAM for persistent storage so must be extremely parsimonious with it.

In each case, the memory strategy is reflected in the choice of Data Structures, in User Interfaces, and in the use of Secondary Storage. The Psion Series 5 development used an implicit strategy, passed by word of mouth. Later ports have had an explicit strategy documents.

See Also

Thinking Small provides a starting point for a project. Most of the other patterns in this book have trade-offs that we can evaluate only in the context of a memory strategy.

Memory Budget Pattern

A.k.a. Memory Costings

How do you keep control in a project where memory is very tight?

· You’re doing a project where memory is limited and there’s a risk that the project will fail if its memory requirements exceed these limits.

· You have several different components or tasks using memory

· Different individuals or teams may be responsible for each.

· Saving memory costs effort – better let someone else do it!

· Unnecessary optimisation would waste programmer time.

You are working on a software development project, and you’ve identified that there’s a possibility that memory constraints may be a significant problem.

For example, the whole Strap-It-On project is obviously limited by memory from the beginning. The Strap-It-On needs to be as small, as cheap, and as low-powered as possible, but also be usable by computer novices and have enough capacity to be adopted and recommended by experts.

If you don’t take sufficient care of the memory constraints in the system design and implementation, bad things will happen to the project. Perhaps the system will fail to work at all; perhaps users will get inadequate performance or functionality; or perhaps the cost of the extra memory hardware will make the software unsaleable.

You could have everyone involved design and code so as to reduce their memory requirements to the bare minimum. That would certainly reduce the risk of the system becoming too big. But there are be costs to this scorched earth approach – if you concentrate on keeping memory low, then you’ll have to accept trade-offs elsewhere such as poor time performance, difficult-to-use interfaces or large amounts of developer effort. It would be poor engineering to concentrate on one aspect, memory use, to the exclusion to all others. More importantly, how can you decide what the “bare minimum” actually is? You could save all the memory by deciding not to implement the program!

In almost any modern system you will be developing or using several components, each with its own memory requirements. Some will provide more opportunities for memory saving than others. There’s no point in working overtime to save a few bytes in one component, when a minor change in another would save many times that. How do you decide which components to concentrate on?

In many projects there will be several teams each working on different components. Each individual team may feel they have less incentive to save memory than other teams — everyone likes to believe that the problem they are working on is unique, and harder than everyone else’s problem. It costs teams programmer effort to reduce memory use – so they’ll be tempted to let a different team pay the cost, treating memory as “someone else’s problem”. How can you share out the pain of saving memory between the teams, so that they can design their software and plan its implementation effectively?

Therefore: Draw up a memory budget, and plan the memory use of each component in the system.
Define memory consumption targets for the each component as part of the specification process. Ensure that the targets are measurable [Gilb88], so the developers will be able to check whether they’re within budget.

This process is similar to the ‘costings’ process preceding any major building work. Surveyors estimate costs and time of each part of the process, to determine the feasibility and to negotiate the requirements of the customer.

Ensure that all the teams ‘buy into’ the budget. Involve them in the process of deciding the figures to budget, estimating the memory requirements and negotiating how any deficits are split between the different teams. Communicate the resulting budget to all the team members and invite their comments. Refer to it while doing Memory Tracking during development, and during the Memory Performance Assessment later in the project. Make meeting the budget a criterion for release of each component. Celebrate when the targets
are met!

Consequences

The task of setting and negotiating the limits in the memory budget encourages all the teams to Think Small, and sets suitable parameters for the design of each component. The budget forces the team to take an overall view of memory use, increasing the architectural consistency of the system. Furthermore, having specific targets for memory use greatly increases the predictability of the memory use of the resulting program, and can also reduce the program’s absolute memory requirements.

Because developers face specific targets, they can make decisions locally where there are trade-offs between memory use and other constraints. It’s also easy to identify problem areas, and to see which modules are keeping their requirements reasonable, so a budget increases programmer discipline.

However: defining, negotiating and managing the budgets requires significant programmer effort.

Developers may be tempted to achieve their local budgets in ways that have unwanted global side effects such as poor time performance, off-loading functionality to other modules or breaking necessary encapsulation (see [Brooks75]). Runtime support for testing memory budget requires hardware or operating system support.

Setting fixed memory budgets can make it more difficult to take advantage of more memory if it should become available, reducing the scalability of the program.

Formal memory budgets can be unpopular with both programmers and managers because the process adds accountability without direct benefits. If the final system turns out over budget then everyone will loose out; if it turns out under budget then the budget will have been ‘wrong’ – so those doing the budget may loose credibility.
Implementation Notes

Suiting Budget to the Project

Producing and tracking an accurate memory budget for a large system is a large amount of work, and can impose a substantial overhead on even a small project. If memory constraints aren’t actually a problem, maintaining budgets is rather a waste of effort that could be better spent elsewhere. And in an informal environment, with less emphasis on up-front design, developers can be actively hostile to a full-scale formal memory budget.

For this reason, many practical memory budgets are just back-of-the envelope calculations – a few minutes work with the team on the whiteboard, summarised as a paragraph in the design documentation. Only if simple calculations suggest that memory will be tight – or tight in certain circumstances – is it worth spending the effort to put together a more formal memory budget.

What to budget?

There are various kinds of memory use; different environments will have different constraints on each. Here are some possibilities:

· RAM memory usage – heap memory, stack memory, system overheads.

· Total memory usage – including memory Paged out to disk.

· ROM use – for systems with code and data in ROM

· Secondary storage – disk, flash and similar data storage, network etc.

In addition, the target environment may add further limitations: a limit on each separate process (such as for code using the ‘Small’, 16-bit addressing model on Intel architectures), or a limit on stack size (imposed by the operating system).

It’s worth considering each constraint in turn, if only to rule most of them out as problems. Often only one or two kinds of memory will be limited enough to cause you problems, and you can concentrate on those.

Dealing with Variable Usage

It’s easier to budget ROM usage than RAM. ROM allocation is constant, so you can budget a single figure for each component. Adding these figures together will give the total ROM use for the system.

In contrast, the RAM (and secondary storage) requirements of each component will normally vary with time – unless a component uses only Fixed Data Structures.

One approach is to estimate the worst case memory use of each component and adding the values together, but the result could well be far too pessimistic; in many systems only a few components will be being used heavily at a time. A workstation, for example, will have only a few applications running at any one time – and typically only one or two actively in use.

Yet the memory use of the different components tends not to be independent. For example, if you have an application making heavy use of a, then the applications peak memory usage is likely to coincide with peak memory use in the network driver. How do you deal with this correlation?

To deal with these dependencies, you can identify a number of worst case scenarios for memory use, and construct a budget for the memory use of each component in each scenario. Often, it is enough to estimate an
average and a peak memory requirement for each component and then estimate which components are likely to have peak usage for each worst-case scenario. You can then sum the likely use for each scenario; and negotiate a budget so that this sum is less than the total for every one of the scenarios.

Dealing with Uncertainty: Memory Overdraft

Software development in the real world is unpredictable. There’s always a possibility for any component that it will turn out to be just too difficult or too expensive in time or other trade-offs to reduce its memory requirements to the budgeted limits. If there are many components, there’ll be a good chance that at least one will be over budget, and the second law of thermodynamics [Flanders&Swan]
 says it is unlikely that components will be correspondingly under budget.

The answer is to ensure that there is some slack in the budget – an overdraft fund. The amount depends on how uncertain the initial estimates are. Typical amounts might be between 5% and 20%. The resulting budget will be more resilient in the face of development realities, increasing the overall predictability of the program’s memory use. However you must be careful to ensure that programmers don’t reduce their discipline and take the overdraft for granted, reducing the integrity of the budget.

The OS/360 project included overdrafts as part of their budgets [Brooks75].

Dealing with Uncertainty: A Heuristic Approach

Having a Memory Overdraft to allocate to defaulting components is a good ad-hoc approach to dealing with uncertainty, but it’s a bit arbitrary. If you’re seriously strapped for memory, allocating an arbitrary amount to a contingency fund isn’t exactly a very scientific approach. Should you assign 5% or 30%? If you assign 30%, you’re wasting a very large amount of memory that you could more economically assign to a component. If you assign less, how much are you increasing the risk?

The solution is to use a technique publicised as part of the ‘Program Evaluation and Review Technique’ (PERT). This is normally used to add together time estimates for project management – see [Filipovitch96], but the underlying statistics work equally well for adding together any set of estimated values.

Make three estimates for each figure rather than just one. Estimate a reasonable worst case value, the most likely (median) value, and a reasonable best achievable (i.e. lowest) maximum value. Try to do your estimation impartially so that it’s equally likely that each final figure will turn out higher or lower than the median you’ve estimated. So when you add them together, probably some of the final figures will be higher and some of them will be lower. In effect combining the all the uncertain figures means that some of the uncertainty ‘cancels out’.

The arithmetic of this is as follows. If the estimated value for component i is ei, and the maximum and minimum values are ai and bI, , then the best guess, or ‘weighted mean’ value for each is:

 (ai + 4ei + bi) / 6

And the best guess of the standard deviation of each is:

(i = (bi - ai) / 6

So the best estimate of the sum is the sum of all the weighted means; and we calculate the standard deviation of the sum, SI using:

Si ^ 2 = Sumi((i ^ 2)

These calculations are very easy to do with a spreadsheet.

For example, Table 1 shows one possible worst-case scenario for the Ring Clock, a kind of watch device worn on the finger than receives radio time checks from transmitters in Frankfurt. This scenario shows it ringing an alarm. Only the Screen Driver and the UI Implementation components are heavily used:

[image: image2.wmf]RAM Scenario 1: Alarm Sounding(Kb)

Min

Est

Max

W. Mean

Variance

(a+4m+b)/6

((b-a)/6)^2

Screen Driver (Worst case)

3

5

7

5.00

0.44

Network Interface

3

5

6

4.83

0.25

UI Implementation (Worst case)

10

12

20

13.00

2.78

Low level network drivers

3

3

3

3.00

0.00

Program Stack

4

4

8

4.67

0.44

O/S

5

5

5

5.00

0.00

Effective Total:

35.5

3.92

Table 1 : Calculation of the Combination of Several Estimates

A good estimate of the maximum and minimum values for the sum is three standard deviations (the so-called ‘95% confidence limits’) above and below the mean. The table above shows the standard deviation to be roughly 2Kb, which gives the following values for the combined estimates:

Maximum:
41K
Estimate:
35K
Minimum:
29K

So we can be reasonably confident that we shall be able to support this particular worst-case scenario with 41K of memory – much less than the sum of the all the maximum estimates.

If the actual memory available is less, then we might need to work on the most variable estimates (UI Implementation) to produce a more accurate estimate – since the large maximum has contributed much of the uncertainty in the figure. Alternatively we might need to do some Featurectomy to reduce the estimated memory requirements of that or other components.

Enforcing the Budget in Software

Some environments provide memory use monitors or resource limits, which you can use to enforce memory budgets. For example IBM UNIX allows you to define a limit on the heap memory of a process, and EPOC’s C++ environment can enforce a maximum limit on application heap sizes. The Memory Limit pattern describes how you can implement these limits yourself.

You can use these monitors to enforce the limits on the maximum memory use of each component. Some projects may use these limits for testing only; in other cases they may remain in the runtime system, so that processes or applications will fail (Partial failure, or complete failure) rather than exceed their budget.

Of course software limits enforce only the maximum use for each component. Typical worst case scenarios will have only a few components using their maximum memory requirements, so such software limits don’t provide a full check that the components are conforming to the budgets.

Example

The Palm Pilot has an interesting budget for its dynamic heap (used for all non-persistent data). Because only one application runs at a time (Program Chaining), the budget is the same for every application that can run on a given machine.

The following is the Pilot’s budget for PalmOs 3.0, for any unit with more than 1 Mbyte of memory [PalmBudget]. Machines with less memory are even more constrained.

PRIVATE
24k
System globals (screen buffer, UI globals, database references, etc.)

32k
TCP/IP stack, when active

Variable amount
IrDA stack, "Find" window, other system services

4k (by default)
Application stack (the application can override this amount)

up to 36k
Available for application globals, static data, dynamic allocations, etc.

Table 2: Palm Pilot 3.0 Memory Budget

Known Uses

[Brooks75] discusses the memory budget for the OS/360
project. In that project, the managers found it important to budget for the total size of each module (to prevent paging), and to specify the functionality required of each module as a part of the budgeting process (to prevent programmers from offloading functionality onto other components).

A current mobile phone project
 has two particular architectural challenges provided by a hardware architecture originally defined for a very different software environment. First, ROM (flash RAM) is very limited. Based on a Memory Budget, the team devised compression and sharing techniques, and negotiated Featurectomy with their clients.

Secondly, though RAM in this phone is relatively abundant, restrictions in the memory management architecture means that each process must have a pre-allocated heap, so every process uses the RAM allocated to it at all times. Thus the team could express the RAM budget in terms of a single figure for each process – the maximum, or worst case, figure.

The Palm documentation specifies a standard memory budget for all Pilot applications. Since only one application runs at a time, this is straightforward.

See Also

There are three complementary approaches to developing a project with restricted memory. The Memory Budget pattern describes how to tackle the problem up front, by predicting limits for memory,
and then implementing the software to keep within these limits. The Memory Tracking
 pattern gathers memory use statistics from developers as the program is being built, encouraging the developers to limit the contribution of each component. Finally, if memory problems are evident in the resulting program, a Memory Performance Assessment the developers uses post-hoc analysis to identify memory use hot spots and remove them.

For some kinds of programs you cannot produce a complete budget in advance, so you may need to allocate memory coarsely between the user and the system, and then Make the User Worry about memory.

Components that use Fixed Size Memory are much easier to budget than those using Variable Size Memory.

Systems that satisfy their RAM or secondary storage memory budget when they’re started may still gradually ‘leak’ memory over time, so you’ll need to Plug the Leaks as well.

 [Gilb88] describes techniques for ‘attribute specification’ appropriate for defining the project’s targets.

Featurectomy Pattern

Also known as: Negotiating Functionality
How do you ensure you have realistic requirements for a constrained system?

· Software is ‘soft’, so the costs of extra functionality are hidden from those who request it.

· Extra functionality costs code and often extra RAM memory

· Specification teams and clients have a vested interest in maximising the functionality received.

· Some functionality confers no benefit to the users.

Software is soft; it's infinitely malleably. Given sufficient time and effort you can make it do virtually anything. But it costs time, effort and memory to achieve this.

Non-programmers are often unaware of this cost (programmers too!). And even if they are aware, or are made aware, many have no means of knowing exactly what the costs are. Will it take more memory to speed up the network performance by 50% than to add a new handwriting input mechanism? It’s difficult for a non-programmer to know.

And in most environments the development team - and particularly the specification team if there is one - is under very great pressure to add as much functionality as possible. Functionality, and elegant presentation of functionality, is the main thing that sells systems. From the point of view of the client or specification team the trade-off is simple: if they ask too little functionality they may be blamed for it; if they ask for too much, the development team will take the blame if they don't deliver it. So the pressure is on them to over-specify.

Yet it's rare that all the possible functionality specified is essential, or even beneficial. For example some MS Windows applications contain complicated gang screens; MS Word 6 even includes an entire undocumented adventure game, hidden from all but initiates. Many delivered systems retain some of their debugging code, or checks for errant – and impossible – behaviour. Such additional code costs both code and often RAM memory in the final system. Yet they provide no service at all to the user.

Therefore: Negotiate a specification to satisfy users within the memory constraints

Analyse the functionality required of the system both in terms of its priority (how important is it?) and in terms of its memory cost (how much memory will it use?). Based on that, negotiate with your clients to remove – or reduce or modify – the less important and more memory intensive features.

Ensure that you remove any additional code for testing and debugging when you make a final release of the software.

Consequences

The released software needs to do less, so uses less ROM and RAM memory. In systems that implement Paging, the smaller code and memory sizes make for less disk swapping, improving the system’s time performance.

There is less functionality to develop and to test, giving reduced development and testing. Because there is less functionality, there can be less interaction between features, leading to a more reliable, and often more usable, system.

However: The system has less functionality, potentially reducing its usability.

Unless the negotiation is handled carefully, the development team can be seen as obstructive to the client’s goals, reducing client goodwill.

Implementation Notes

It can be difficult to impress on even technically-minded clients that memory limits are a significant issue for a project. Most people are familiar with the functionality of a standard MS-Windows PC, and find it difficult to appreciate the impact of much lower specification systems.

A good way to approach the negotiations is to prepare a Memory Budget allocating memory costs to each item of functionality – see Functionality a la Carte [Adams95]. Although this can of course be difficult to do, it makes negotiation straightforward.

Given this shopping list, and the fixed total budget, then the specification team and customers can make their own decisions about what functionality to include. Often they will have a much better idea of the importance of each feature, so they can make the trade-offs between options.

The Next Release

Frequently people (clients or developers) become ‘wedded’ to features, perhaps because it was their idea, or because somebody powerful wants it. In that case it becomes very difficult to negotiate such features out of a product no matter how sensible it may appear to everyone else concerned.

In that case a common approach is to agree to defer the feature until the next system release. By then it may well be obvious whether the feature is necessary, but also it will allow a more impartial appraisal once time has gone by.

Supporting Variant Systems

Features that are essential to one set of users may be irrelevant to others. In many cases there won’t be any single user who needs all the system functionality.

So you can provide optional features in separate Packages, which can be left uninstalled or merely not loaded at run-time. In systems that don’t support packages, you might use conditional compilation or source code control branches to tailor different systems to the needs of different sets of users.

Sometimes this results in two-tier marketing of the system: a base-level product with low memory demands, and a high-tier (‘professional’) product with higher hardware requirements.

Thin Client

One particularly powerful form of featurectomy is possible when there is some form of distribution with a central server and one or more client systems. In such ‘client-server’ systems the trend until recently has been to have much of the business processing at the clients (‘fat clients’), talking to a distributed database. This approach obviously requires a lot of code and data in the client. And it may well be unsuitable if the client has little memory or processing power.

Instead, given such a system, it is often possible to offload much of the processing to the server. You can do this by making the client simply be a graphics workstation (provide an character or X-windows terminal emulation). But often a better approach is to implement a ‘thin client’, which provides a UI and does simple user input validation, but which passes all the business-specific processing to a central server.

[image: image3.wmf]GUI

Business

logic

Database

GUI client

GUI

Business

logic

Database

Fat client

Thin client

GUI

Business

logic

Database

Business logic

Figure 2: Three kinds of client-server

Other Featurectomy options:

Often there are specification alternatives to simply cutting out a feature altogether. For example you might agree Lower Quality Multimedia for the implementation, or use Fixed User Memory in the interface, to reduce the memory demands. You might Make the User Worry – for example by making the user to explicitly start any functionality required, rather than starting it automatically.

You may be able to cut down on the additional data demands of the system. For example a mapping application might store only a subset at any time of all the maps required; a dictionary application might support only one language or technical subset at a time; an operating system might cut down on the number of simultaneous services available.

Debugging Code

One key set of users whose needs are different from others is the programmers themselves testing and debugging the system. Examples of such code are:

· Tracing code, to show what the program is doing.

· Checking code, to verify that the program is working correctly. Examples are assertions and invariants [Meyer]

· Debugging test harnesses, such as ‘main()’ functions added to classes for localised testing.

· Debugging support functions, such as functions to allow test code to access ‘private’ data for ‘white box testing’ [test]

· Instrumentation macros for memory and performance optimisation (see the Plugging the Leaks Pattern).

Clearly none of this code is vital to the delivered system. It will waste code space, and potentially impact the time performance of the system. So you’ll want to remove it from the deliverable product. Ideally, though, you’ll want to keep it in your codebase, so that it’s available for future testing, debugging and optimisation.

The Eiffel language [Eiffel] is designed specifically to support this kind of dual mode. In debugging, it encourages programmers to define additional checking code: preconditions and postconditions for each function, and invariants for each class. In release mode the compiler doesn’t generate this checking code at all.

Conditional Compilation in C++

In C++ the usual technique is to use pre-processor flags and macros. For example

#ifdef DO_TRACE

define TRACE(x) printf(x)

#else

define TRACE(x)

#endif

allows us to use the TRACE throughout the code. When debugging, we can declare the DO_TRACE macro (in a global header file, or on the compiler command line); in the final system we can omit it.

An even more common form of this in C++ is the assert macro, built into the C++ environment (header file assert.h):

#ifdef NDEBUG

define assert(exp)
((void)0)

#else

define assert(exp) (void)((exp) || (_assert(#exp, __FILE__, __LINE__), 0))

#endif
/* NDEBUG */

The _assert() function here displays a text message with the text of the assertion, and the location (sometimes in a dialog box). Then you can use expressions like:

assert(x== 0);

and in debug mode the assertion is tested; in release mode the line of code is featurected.

Conditional Compilation in Java

Conditional compilation in Java uses a compiler optimisation. Most Java compilers can detect when certain code is ‘dead’ and will not produce corresponding byte codes. So a test using a static final boolean provides conditional compilation:

class Assertions {

 public static final boolean isEnabled = true;

 // Change to false for release

 public static void assert(boolean assertion, String message) {

 if (!assertion)

 throw new Error("Assertion failed: " + message);

 }

}

You might use this as follows:

 public static void main(String[] args) {

 try {

 int x=0;

 if (Assertions.isEnabled)

 Assertions.assert(x == 1, "x is non-zero");

 Assertions.assert(x==1, "second one");

 } catch (Throwable e) {

 e.printStackTrace();

 }

 }

Examples

[Matrix for Strap-it-on showing features, estimated peak and average ROM and ROM use to support each, and development time in man-days]. Based on this we decided to exorcise feature X.

Known Uses

In a recent Symbian EPOC mobile phone development, the initial ROM demands were way over budget. The development team used a ROM budget and Memory Tracking to analyse the problem, and negotiated Featurectomy with the client’s specification team. In particular they agreed to have different language variants of the system for different markets, thereby considerably cutting down total size of Resource Files.

Microsoft Windows CE provides pocket versions of MS Word, MS Excel and other applications. In each application, the CE developers have cut down considerably on the functionality. For example Pocket Word 2.0 omits, amongst many other things, the following features of MS Word 97:

· Thesaurus

· Mail-Merge

· Auto Format

· Clip-art

· Support for non-TrueType fonts

· Float-over-text pictures

Pocket Word also uses a different internal file format from any MS Windows version of Word, making the user worry about file conversion.

See Also

Usually you will need a Memory Budget as a basis for Featurectomy negotiations.

Memory Tracking allows you to see the effects on memory use as features are implemented. Featurectomy may be appropriate if things look bad.

Some forms of UI patterns may provide Featurectomy without significantly affecting the usability of the system. For example Fixed User Memory provides feature with a fixed maximum memory use. And User memory configuration allows the user to chose which features are present at run-time.

Alternatives to Featurectomy include Compression, using Secondary Storage, Packed Data and Sharing – and indeed most of the other patterns in this book.

References

[Noble+Weir98] Proceedings of the Memory Preservation Society - Patterns for Small Machines James Noble. Charles Weir Proceedings of the conference EuroPLoP 1998

[Beizer84]
Software System Testing and Quality Assurance, Boris Beizer, Van Nostrand Reinhold 1984, 0-442-21306-9

[EPOCSDK]

[whyMistakes]
Something about the brain’s stack of seven items. Tony Buzan? Use your head.

[Weir96]
Improve your Sense of Ownership– Charles Weir, ROAD magazine, March 1996. http://www.cix.co.uk/~cweir/papers/owner.ps

[Apicella99]
JProbe Suite 2.0 takes the kinks out of your Java programs, InfoWorld May 17, 1999 (Vol. 21, Issue 20) http://www.infoworld.com/archives/html/97-e04-20.78.htm

[OptimizeIt]
http://www.optimizeit.com/
[Jprobe]
www.klgroup.com
[sun]
www.sun.com

 [Lycklama99]
Memory Leaks in Java, Ed Lycklama, Presentation at Java One 1999. Available at http://www.klgroup.com/jprobe/javaonepres/

 [Regclean]
A memory assessment of MS Regclean in the risks digest http://catless.ncl.ac.uk/Risks/20.37.html

[Brooks75]
The Mythical Man Month.

[Blank+95]
Blank and Galley (1995) How to Fit a Large Program Into a Small Machine, available as http://www.csd.uwo.ca/Infocom/Articles/small.html
 [MicrosoftSpy97]
Microsoft Visual C++ 5.0 Spy++ Online Help Documentation, Microsoft 1997.

 [Gilb88]
Principles of Software Engineering, Tom Gilb, Addison Wesley 1988, 0-201-19246-2

[Flanders&SwanXX]
The laws of thermodynamics (song). In ‘the collected works of F&S’,

DeMarco
Project Planning?

[Filipovitch96]
Project Management: Introduction, A.J.Filipovitch 1996, http://krypton.mankato.msus.edu/~tony/courses/604/PERT.html

[Baker&Baker98]
Complete Idiot's Guide to Project Management, by Sunny Baker, Kim Baker, MacMillan 1998; ISBN: 0028617452

[Kruekeberg&Silvers74] KRUECKEBERG, D.A. & A.L. SILVERS. 1974. "Program Scheduling," pp. 231-255 in Urban Planning Analysis: Methods and Models. NY: John Wiley & Sons, Inc.

[Brooks75]
The Mythical Man Month.

[PalmBudget]
ID 1136 Palm web.

[Shaw&Garlan]
Software Architecture - Perspectives on a Emerging Discipline, Shaw and Garlan, Prentice Hall ISBN 0-13-182957-2

[XP]
Extreme Programming Explained, Kent Beck, Addison-Wesley 2000, 201-64141-6

Software Requirements and Specifications by Michael Jackson

Peopleware Tom DeMarco

[Adams95]
Functionality a la Carte, S.S.Adams, Patterns for Programming Design 1, 7-8.

[Rappel]
to add in text
[Episodes]
to add in text

�PAGE \# "'Page: '#'�'" ��I like this one!

�PAGE \# "'Page: '#'�'" ��I think quiescent is a lovely word — but will the Americans understand it? I was going to replace it with “average” but thought — hell no!

�PAGE \# "'Page: '#'�'" ��Actually the song doesn’t mention probability :-(Anyway – it’s not the second law, it’s Sod’s law. Second law probably says the opposite.

�PAGE \# "'Page: '#'�'" ��Have to look in the Mythical Man Month. What’s special about this?

�PAGE \# "'Page: '#'�'" ��Not sure if I can talk about this. I’ll have to ask around.

�PAGE \# "'Page: '#'�'" ��Don’t see why not. Ask them.

�PAGE \# "'Page: '#'�'" ��we could have another implentation note on this — or is it memory tracking??

�PAGE \# "'Page: '#'�'" ��what story are we telling about the relationship between tracking and budgeting?

�PAGE \# "'Page: '#'�'" ��do we need to say this?

�PAGE \# "'Page: '#'�'" ��Took out the stuff about putting stuff in Java classes – this is covered by Packages earlier in the chapter.

© 1999 Charles Weir, James Noble
Page 1

_1005486766.vsd
Think Small�

Memory Budget�

Featurectomy�

Memory Tracking�

Exhaustion Test�

Memory Performance Assessment�

Plugging the Leaks�

Program Chaining�

_1005567801.ppt

GUI client

Fat client

Thin client

GUI

Business logic

Database

GUI

Business logic

Database

GUI

Business logic

Database

Business logic

_1001874335.xls
Sheet1

		RAM Scenario 1: Alarm Sounding(Kb)

				Min		Est		Max		W. Mean		Variance

										(a+4m+b)/6		((b-a)/6)^2

		Screen Driver (Worst case)		3		5		7		5.00		0.44

		Network Interface		3		5		6		4.83		0.25

		UI Implementation (Worst case)		10		12		20		13.00		2.78

		Low level network drivers		3		3		3		3.00		0.00

		Program Stack		4		4		8		4.67		0.44

		O/S		5		5		5		5.00		0.00

		Effective Total:								35.5		3.92

		Weighted Mean Sum:		35.5

		Weighted Standard Dev.		1.9790570145

Sheet2

		

Sheet3

		

