
Patterns for E-commerce applications

Gustavo Rossi *, Fernando Lyardet *, Daniel Schwabe **
 *LIFIA Facultad de Informática. UNLP.

La Plata, Argentina
E-mail: {fer,gustavo}@sol.info.unlp.edu.ar

**Departamento de Informática, PUC-Rio, Brazil
E-mail: schwabe@inf.puc-rio.br

Abstract

In this paper we present some patterns we found in E-commerce applications. First, we
briefly characterize these applications as a particular case of Web applications. We next review
some Web patterns that can be used in E-commerce applications. Finally, we present five new
patterns: Opportunistic Linking, Advising, Explicit Process, Secure Backtrack and Push
Communication.

Introduction

The World Wide Web has become a popular platform for E-commerce applications.
These applications combine navigation through an electronic catalogue with operations affecting
this catalogue. In this sense e-commerce applications are a particular kind of Web applications
with similar requirements: good navigational structures, usable interfaces, a clear domain model,
etc.

However, E-commerce applications present new challenges to the designer: we not only
need to help the user find what he wants (a product he will buy) but also ease the shopping
process. For example we should keep him informed about new releases and, last but not least,
keep him in the electronic shop for a longer time.

We have developed a conceptual framework for reasoning on design reuse in Web
applications. In our approach [Schwabe98, Schwabe99], applications have an object model, a
navigational view and the interface. While the object model deals with the usual application
behavior, the navigational view defines the architecture of the hyperspace and the interface
defines the look and feel of the application. While it is obvious that e-commerce applications will
involve particular problems at the object level (related for example with the particular workflow of
activities), we are mainly interested in design structures at the navigational level. In this paper we
discuss some particular problems related with the navigation topology of a virtual store.

We have been mining patterns for designing Web applications for the last 5 years
[Rossi96, Rossi97,Lyardet98, Lyardet99, Rossi99]. These patterns provide guidelines to organize
the information hyperspace and to design usable interfaces. In some way, they are similar to
Alexandrian patterns, as their aim is to assist the designer in the process of building confortable
information spaces, where users can navigate or search information. Navigation patterns show
how to push forward the basic hypermedia paradigm (on top of which we build Web applications),
based on nodes, links and indexes and build more complex navigation arquitectures.

Some of the papers we mined before (See [Rossi99]) can be easily applied to the E-
commerce field. For example the News pattern shows how to make the user aware of new
releases by dedicating part of the home page to those news. The Basket pattern provides a way
to postpone operations on products by putting them in a (shopping) basket. Finally the Landmark
pattern helps to organize the site in sub-sites (shops) that are reachable from every node.

In this paper, we present other patterns that can be used to build successful Web
applications. It is interesting to notice that while applying some of them, we solve an usual
customer problem (how to find what he wants), others help to solve a problem of the store (how

to get the user “seduced” with the store and not leave it). We will point those differences in each
pattern.

Opportunistic Linking

Intent
Keep the user interested in the site. Seduce him to navigate in the site even when he has already
found what he was looking for

Motivation
Suppose we are building a Virtual Store such as www.amazon.com. By entering the site we can
buy many different products such as videos, books or CDs. We can explore the products, and
besides we provide links to recommendations, comments about the products, news, etc.
However, many users navigate with a specific target: for example buying one particular book.
Once they have bought that book, they may leave the site.

One possibility is to add links to each product page to motivate the reader to navigate to other
products. In a well-structured site, however, we must try to provide links with strong semantics to
reduce the risk of disorientation. So, how do we reconcile these two requirements?

Forces
• We want to keep the user navigating in our store even after he bought something
• We don’t want to compromise the structure of the store by adding not meaningful links

Solution
Improve the linking topology by suggesting new products to explore from a given one. Use
relationships with strong semantics to make the user feel confortable. Take into account that
many of these links may change from day to day so that the interface should be defined
accordingly. Notice that this pattern can also be used at the conceptual level to derive new
relationships. However the intent is clearly navigational: keep the user navigating in a pleasant
way.

Examples
Opportunistic Linking can be found in many electronic stores. For example in www.cdnow.com or
www.amazon.com you may find CDs related with the one you chose. In Figure 1 we show an
extreme example in Amazon.com. Once the user has chosen a book and put it in the shopping
card, he receives a suggestion of another book he might be interested in.

Figure 1: Opportunistic linking in amazon.com

Related Patterns
Opportunistic Linking is quite similar to Advising; in fact one may argue that what you are doing
when applying this pattern (see Figure 1) is advising the customer. However, the intent is
different. While opportunistic linking tries to keep the user inside the store by giving him new
ideas to buy, Advising help him to choose what he wants.

Advising

Intent
Help the user find a product in the store. Assist him according to his wishes

Motivation
Many times users enter into a virtual store just to find some product they would like to buy. In a
typical store there may be thousands of products and providing good indexes or search engines
may be just a partial solution to give him some orientation. Applying the News pattern [Rossi99]
we can show him new products or releases. However, news may change from day to day and
besides we can not be sure that he will be interested in a new product.

Forces
• Customers in an electronic shop may need to be assisted to find a product
• Search engines and indexes (for example taxonomic) are useful but they may be an

incomplete solution
• We should take into account what the user may want

Solution
Build specific functionality for advising about products. This functionality may be implemented in
different ways. For example, there can be a complete sub-system for recommendations as in
www.amazon.com that use customer’s profiles (in general their buying history) for recommending

products. It may be more general, and present the user the best seller products, or products on
sale, etc. The design of the advising facilities should not interfere with the global navigational
structure

Examples
Advising is used in almost all virtual stores. For example, Amazon not only provide
recommendations according to the user’s profile but includes best sellers, updating hourly its list
of 100 hot books. In www.barnesandnoble.com for example a bargain section is included in the
home page together with general recommendations. www.netgrocer.com just give information
about products on sale. In Figure 2 we show the structure of advising in www.cdnow.com. In
www4.activebuyersguide.com one can find a complete site devoted to advising. Many E-
commerce sites provide links to this site to provide “unbiased” descriptions of their products.

Figure 2: Advising in www.cdnow.com

Related patterns
Advising is similar to Opportunistic Linking. However, in this example the intent is to help the user
find its way towards a product. While Opportunistic Linking is aimed at “trapping” the user once
he found a product, Advising has a more general scope. In fact both patterns could be considered
as specific versions of a more generic one.

Explicit Process

Intent
Help the user understand the buying process when it is not atomic

Motivation
In most virtual stores the checkout process is complex and involves filling different forms
(shipping and billing address, information on credit card, etc). Taking into account the very nature

of the Web the user may experience disorientation and may wonder if he had already filled some
information and may be confused about the whole process. This may cause that he either cancel
the process or he tries to backtrack to previous pages, perhaps leading to some inconsistent
state (See Secure Backtrack).

Forces
• The checkout or registering process may be complex
• Users tend to feel disoriented as they progress through this process

Solution
Give the user a perceivable feedback about the process by keeping him up to date about which
steps he has already accomplished. This can be done by using a “progress” line or by just
enumerating the steps and informing where he is now. Take into account the possible
consequences of his backtracking (See Secure Backtrack) in order to minimize the possibilities of
reaching inconsistent states.

Examples
In most stores we can find simple implementations of this pattern. For example in
www.barnesandnoble.com for example, the customer has to progress through 7 steps that are
clearly indicated in a sequential way. In www.amazon.com meanwhile the implementation is more
elegant as shown in Figure 3. In the top of the screen you can see a process line indicating that
you are in step “Items” and that you still lack four steps until finishing.

Figure 3: Explicit Process in Amazon.com

Related Patterns:
Explicit Process is related with Secure Backtrack as they both tend to simplify and make the
checkout (or other non-atomic) process safer. Explicit Process is a particular case of Process
FeedBack [Rossi00]

Secure Backtrack

Intent
Provide safe undoing capabilities in a complex process

Motivation
As previously explained some process in e-commerce applications may be quite complex (as the
checkout process). While indicating the step in which we are is useful, it may also happen the
user misspelled some information or he may want to change some data in his order. The naive
solution would be letting the customer backtrack (using his browser Back button), correct the
corresponding data and re-do the process. However, as he may not be aware of the exact
browsing semantics, it may happen that he finds an inconsistent state. For example, the shopping
basket may have changed (if some items were changed for example). The problem with the Back
button is that the semantic of backtrack can interfere seriously with the intended undo operation.

Forces
• The checkout or registering process may be complex
• The customer may need to undo some previous operation
• Using the Back button may yield unexpected results

Solution
Provide the user with Undo facilities avoiding him to use navigation facilities for this purpose. The
undo facilities will have to take into account the customer state in the process in order to be
effective. Take into account the browsing semantics in order not to reach an inconsistent state.
This pattern extends the idea of backtracking typical in Web applications adapting it to the
application’s semantics. Instead of returning to the last Web page (using the Back button), we
return to the corresponding state to undo the operation. It is important to stress that this
difference is specific to this domain as the Web is based on a simple hypertext paradigm with a
general backtrack functionality.

Examples
We have found many different examples and implementations of this pattern in E-commerce
applications. For example in www.powells.com, a customer is exposed to all the information in the
confirmation step and he can choose to update or modify your data. Meanwhile in
www.amazon.com (See Figure 4) customer information is added incrementally and he can choose
to change previously entered data. Notice the small buttons near each information item, indicating
that you can correct the information. When you select to edit the billing address for example, you
return to the corresponding page, and once changed you can continue the process. Notice that
we are using a backtrack-forward algorithm that changes the usual browsing semantics adapting
it to the needs of the store.

Related Patterns
Secure Backtrack can be used jointly with Explicit Process keeping the user aware of his current
state in the process.

Figure 4: Secure Backtrack in Amazon

Push Communication

Intent
Simplify the searching process for customer-selected areas or products

Motivation
It is well known that the Web implements a so-called “pull” model. Customers visit a virtual store
and pull the information by browsing through the information base. While this model works fine in
most cases, there are situations in which it puts excessive burden on the customer. Suppose that
he is interested in books on a particular subject or on making tourism to a certain place. How can
we simplify the process of his finding that information? The naive, pull-based, solution is letting
the user enter each day, find the corresponding information to see if it is what he wanted. Even
when using the News pattern [Rossi99] it may happen that not all new products are announced.
We could also use the Advising pattern and add each new product that may interest the customer
to the list of advised ones. However, even in this case, the customer has to enter the store and
find if the information is there.

Forces
• Finding new information is not always easy
• User waste a lot of time connecting to find new products
• The basic Web model is pull-based

Solution
Combine the usual Web pull model with a push-based communication. Find ways to
communicate with the customer without forcing him to find the information. This solution may
have different implementations; for example the customer may subscribe to a given subject (or

type of product) and receive a mail message each time a new item matching his interests has
arrived. This email may directly contain the URL of the product for him to “pull” the information.
Another possible alternative is to personalize his site using “channels”. Once he enters into a
channel he finds the information on the content he is willing. Mailing and channels can be
combined to improve customer access to the information. Notice that this pattern goes further in
the usual communication metaphor between Web users and Web sites.

Examples
Most virtual stores provide some kind of subscription mechanism for helping customers know
when a particular item has entered into the shop. In www.amazon.com for example, each time a
customer search for a product (in a particular subject or area) he is invited to sign up to receive
mails each time a new release arrives (See Figure 5). In www.izero.com, and www.netzero.com
that provide free Internet access, Push Communication is used to send advertising to the user.
Finally in Figure 6 we show the Expedia.com fare tracker. The customer selects an itinerary and
he can receive feedback on cheap fares both by email or by having his profile updated (a kind of
channel). In this example the customer may choose to go to his personal profile to have
information related to his preferences. Finally in www.bloomeberg.com we can see a more
extreme example of Push Communication. You can select some stocks and you receive (in a
separate window) information about changes in those stocks in real time.

Figure 5: Subscribing to a push service in Amazon

Figure 6: Push Communication in Expedia.com

Related Patterns
Push Communication may be considered as a particular implementation of the News pattern
[Rossi99]. However, we preferred to differentiate these two patterns as they comprise quite
different strategies for managing customer-shop communication and they involve different
technologies.
The discussion underlying Push Communication can be rooted to the Observer design pattern. In
fact we can consider the customer as an observer on a set of facets of the store and the
communication (for example an email) as a particular implementation of the usual “update”
message, typically found in object-oriented implementations. Once the observer received the
email he pull the information. The discussion on granularity of changes can also be rooted to the
discussion in [Gamma95].

Concluding Remarks
We have presented five new patterns for electronic commerce applications. These patterns focus
mainly on ways to solve usual problem customers have to find and buy products in the shop.
They provide hints to the Web application designer in order to make these applications more
usable and effective both from the point of customers and owners of the store. By showing non-
trivial extension of the basic Web model (based on nodes and links) these patterns help to
improve the navigation topology and some aspects of the customer-store communication ‘styles.

Bibliography

[Gamma95] Gamma E.,Helm R., Johnson R., Vlissides J.”Design Patterns. Elements of Reusable
Object Oriented Software.”, Addison Wesley, 1995.

[Lyardet99] F. Lyardet, G. Rossi, D. Schwabe: “Patterns for adding search capabilities to
Web Information Systems”. Proceedings of EuroPLoP 99.

[Rossi96] G. Rossi, A. Garrido, S. Carvalho: “Patterns for object-oriented hypermedia applications”.
In Pattern Languages of Programs II, Addison Wesley, 1996.

[Rossi 97] G. Rossi, D. Shwabe and A. Garrido : Design Reuse in Hypermedia Design
Applications Development Proceedings of ACM International Conference on
Hypertext (Hypertext’97), Southampton, UK, 1997, ACM Press.

[Rossi99] G. Rossi, D. Schwabe and F. Lyardet: “Patterns for designing navigable information
spaces”. Pattern Languages of Programs IV, Addisson Wesley, 1999.

[Rossi00] G. Rossi, D. Schwabe and F. Lyardet: “User Interface Patterns for Hypermedia
Applications”. Proceedings of AVI00, Advanced Visual Interfaces, Palermo, Italy, May
2000.

[Schwabe98] D. Schwabe, G. Rossi: “An object-oriented approach for Web-based applications design”.
Theory and Practice of Object Systems (TAPOS), October 1998.

[Schwabe99] D. Schwabe, G. Rossi, F. Lyardet: “Web application models are more than conceptual
models”. Proceedings of the First International Workshop on the WWW and Conceptual
Modeling, Paris, November, 1999.

