GenericFactory

DRAFT

Oliver Vogel
SYSTOR AG
Peter-Merian-Strasse 84
CH-4002 Basel
Switzerland
E-mail: oliver.vogel@systor.com

Abstract

The AbstractFactory pattern is a solution often used for isolating clients from the construction
of concrete objects. Normally a new concrete factory class is developed for each concrete
product family. Therefore new specific construction code has to be written each time a new
product family needs to be supported. This approach influences software productivity nega-
tively as it does only cover the reuse of design ideas. Although design reuse is an important
and valuable factor for successful software development, it isn’t enough in the case of the
AbstractFactory pattern. As described above, new construction code has to be implemented
for each product family. In order to minimize the effort involved in supporting a new product
family, the reuse of code should also be achieved. A configurable factory as described in the
implementation section of the AbstractFactory pattern would be an appropriate solution. For
every product family, a factory object could be instantiated and configured with the product
family objects, so that the only code, that would have to be written, would be the one config-
uring the factory. This results in less implementation effort and thus in an increased software
productivity. The GenericFactory pattern describes how to realize a configurable factory.
Moreover, it shows how normal objects can become singletons at run time and how objects
can be specified via an abstract or a concrete product identification.

Intent

To provide a flexible, extendable and configurable product construction mechanism that can
deliver different objects specified by an abstract or concrete product identification, as well as
allow a combination of products in a product family. Further, enlarge the reuse of code, and
support the construction of singletons.

Classification
Object Creational

Motivation

Consider an application that has to deal with two problem domains: workflow and organisa-
tion. Within the workflow domain, abstractions like Process, ProcessDef and WfHandler can
be found. A ProcessDef object describes a process and a Process object represents an ac-
tual workflow process that can be initiated on a workflow system via a workflow handler object
(WfHandler). A WfHandler is a singleton. That means that there can be only one WfHandler
per workflow system. Imagine that the application should be able to support different workflow
systems. At first, the Livelink workflow system shall be used. In the future, it might be possible
to migrate to a workflow system by another vendor, i.e. Staffware, or to support several si-
multaneously. In order to enable clients to work with different concrete workflow systems
without knowing them directly, interfaces need to be introduced. This allows clients to com-

Draft Submission to EuroPLoP 2000 1

municate with concrete objects through their abstract interface. In the workflow example the
vendor specific classes are derived from Process, ProcessDef and WfHandler. This is illus-
trated in Abbildung 1. The classes that belong to the Livelink product family are prefixed with
“LL” and the ones belonging to the Staffware product family with “SW”.

<<Interface>> <<Interface>> <<Interface>>
Process ProcessDef WfHandler
g J /4
LLProcess SWProcess LLProcessDef SWProcessDef LLWfHandler SWWwfHandler

Abbildung 1: Workflow Domain Classes

The next step would normally be the usage of the typical AbstractFactory pattern by modeling
an abstract factory that declares the needed interface for the construction of workflow prod-

ucts.

<<Interface>>
AbstractWorkflowFactory

CreateProcess()
CreateProcessDef()
CreateWfHandler()

Abbildung 2: Abstract Workflow Factory

After that two concrete factories would be derived from AbstractWorkflowFactory: one that
handles the Livelink and one that handles the Staffware product family. This is illustrated be-
low.

<<Interface>>
AbstractWork flowFactory

CreateProcess()
CreateProcessDef()
CreateWfHandler()

&

LLWorkflowFactory SWWorkflowFactory

CreateProcess() CreateProcess()
CreateProcessDef() CreateProcessDef()
CreateWfHandler() CreateWfHandler()

Abbildung 3: Workflow Factory Hierarchy

The concrete factories would override the construction methods and return either a Livelink or
a Staffware specific product. LLWorkflowFactory would, for example, return a pointer to a
LLProcess object if a client calls its CreateProcess() method. Normally there is only one con-
crete factory available per product family. The actual concrete factory is often requested from
a static GetFactory() method, which is declared in the AbstractWorkflowFactory class. By in-
stantiating a different concrete factory within this method, the whole product family can be
exchanged at run time."

! Refer to Gamma E. e.a. (1995), p. 87ff. and p. 107ff. for further information

Draft Submission to EuroPLoP 2000 2

The above solution can also be applied to the organisation domain, where abstractions like
Department, Company and Division are used. As the mentioned application must be able to
work in different banking environments, an abstract organisation factory would be introduced.
Further, the concrete factories UBSOrgFactory and CSOrgFactory would be derived from Ab-
stractOrgFactory. The former would construct specific products for the UBS, and the latter for
the CreditSuisse environment.

<<Interface>>
AbstractOrgFactory

CreateCompany()
CreateDepartment()
CreateDivision()

| . |

UBSOrgFactory CSOrgFactory
CreateCompany/() CreateCompany()
CreateDepartment() CreateDepartment()
CreateDivision() CreateDivision()

Abbildung 4: Organisation Factory Hierarchy

There are several disadvantages of the above approach. For each new product family, a new
concrete factory must be derived and implemented. This is quite time consuming if there is no
mechanism that automatically generates the relevant source code skeleton. If a forward engi-
neering approach is used in the software development process, it would also be necessary to
generate the relevant classes within the design model. Furthermore, the static GetFactory()
method of the corresponding abstract factory needs to be changed. Although the reuse of
design is achieved by using the AbstractFactory pattern, the overall implementation time of
this pattern does negatively influence software productivity. Therefore, it would be advanta-
geous to have a factory class that can be configured at run time and extended dynamically.
This would result in a blackbox implementation of the AbstractFactory pattern and so combine
the typically intended reuse of design ideas with the reuse of code. Moreover, for every new
product family a blackbox factory could be instantiated and configured with the product family
objects. Further, the only code that would have to be actually written would be the one config-
uring the factory. This would lead to less implementation effort and thus to increased software
productivity.

Applicability

Use the GenericFactory pattern when?

» a system should be independent of how its products are created, composed and repre-
sented.

« a family of related product objects is designed to be used together and you need to en-
force this constraint.

» reuse of code shall be enlarged.

» you develop a framework where black box reuse shall be achieved.

¢ the object construction and delivery mechanism shall be a generic base service.

* normal classes shall become singletons without changing their structure.

’s.Gamma, E. e.a. (1995), p. 88 for the first two points

Draft Submission to EuroPLoP 2000 3

Structure

Factory Trader Factory
CreateProduct()
gre;neruducxo - +fBroker +acory |canBuildg
R:gi::rt(;ry() ’ factoryName : String « |RegigerPoductFamily()
Unregister) 1 fBrokerFactory Regi gerAbstract Product()
Get)) RegigerConcreteProduct()
SetDefaultFamil y()
PFID : String
+factory ‘ 1
factoryPFamily
+pFamily|
C<<|merfaCE>> ConcreteProductinfo +cProductinfo +pFamily 3
oncreteProduct | ,cproduct +cProductinfo CPID - Sui u ProductFamily
String <> CPID : String |PFID : String
Cl ;
COOr?SetSJCI() cPrductinfoCProduct isSingleton() * pFamilyCProduct 1 APID g
+cProduct | :
+pFamily 1
pFamilyAProduct
Figure 1: Generic Factory Structure
Participants
¢ FactoryTrader

- is repsonsible for the delivery of products.

- administrates factories.

- shields clients from the used construction mechanism.

Factory

- administrates ConcreteProducts.

ConcreteProduct

- declares an interface for the needed Prototype operations.
ProductFamily

- acts as an container for ConcreteProducts belonging to a ProductFamily.
ConcreteProductinfo

- holds additional information, which is needed for the construction mechanism.

Collaborations

Clients ask the FactoryTrader to create specified ConcreteProducts.

The FactoryTrader asks all registered Factories, which one can build the demanded Con-
creteProduct.

Each Factory checks its ConcreteProduct pool and constructs the ConcreteProduct, if it is
available in the pool.

Consequences
The GenericFactory pattern has the following benefits and liabilities:

1.

Clients are isolated from the construction process of concrete objects. Thus GenericFac-
tory also offers a solution to the design problem addressed by the AbstractFactory pat-
tern, but in a generic way.

GenericFactory eases black box reuse and still enables white box reuse. The Factory can
be subclassed to supply more specific services. If clients would like to work with a con-
crete Factory, they can request it from the FactoryTrader. Afterwards clients can down-
cast to the concrete interface and use the declared services.

Application developers do not have to know how the construction mechanism works, as
they don’t have to implement a new factory for a new product family. They can create a
new instance of Factory instead and configure it with their ConcreteProducts.

Draft Submission to EuroPLoP 2000 4

4. Especially appropriate for framework development. The construction mechanism is a
base service which can be integrated in the framework core and reused in several appli-
cations.

5. Normal objects can become singletons. There is no need to implement the Singleton
pattern. Instead ConcreteProducts can just be registered as Singletons at a Factory.

6. All ConcreteProduct classes must implement the Prototype interface. This may sound as
a disadvantage, but normally they are anyhow implemented to increase performance. If a
prototype method is offered by an object a client only needs to request an instance from
the corresponding factory once and can then use the prototype method to create clones.

7. Clients must take care of type safety. To actually work with the ConcreteProducts, clients
have to downcast to the expected interface. They cannot be sure, that they really get
what they wanted as a totally different ConcreteProduct could have been registered under
the given CPID or APID. That's the typical trade off between a highly flexible concept and
type safety.

8. Clients do not know, if objects with which they are working are singletons. There is no
possibility to ask a ConcreteProduct, if it is a Singleton. Singleton characteristics of a
ConcreteProduct have to be documented somewhere else, for example in the design-
model.

9. Clients may not violate against the construction process. For example, it is possible for
clients to create a clone of a Singleton. Thus every application developer needs to follow
the construction rules to help avoiding unexpected behaviours.

10. Who shall delete ConcreteProducts? If there is no garbage collection, application devel-
opers must agree upon a policy on how to handle the deletion of ConcreteProducts.
Imagine following example policy: Factories delete their registered ConcreteProducts and
clients delete the ConcreteProducts they requested. If a ConcreteProduct is a Singleton,
clients mustn’t delete it.

11. Construction mechanism may not be very performant. Normally every time a client re-
guests a ConcreteProduct the FactoryTrader loops through all Factories to find the one,
which can deliver the ConcreteProduct. This could lead to a performance bottleneck.
Therefore a smart FactoryTrader could be introduced. A smart FactoryTrader remembers,
which Factories can deliver which ConcreteProducts. Thus if a client requests a Concre-
teProduct, thas has already been delivered the FactoryTrader directly knows, which Fac-
tory to use. This increases performance a lot. Furthermore, a client can request a Con-
creteProduct only once and then use the Prototype methods.

Implementation

The GenericFactory pattern describes a way to implement a black box factory. It also shows
how normal objects can become singletons at run time and how objects can be specified via
an abstract or a concrete product id. Moreover, GenericFactory enables the grouping of prod-
ucts to product families. GenericFactory is a composite pattern as it does combine several
patterns to solve its addressed design roblem.? GenericFactory is composed of the Single-
ton, the Prototype®, the Broker/Trader’, the FactoryMethod6 and the PropertyList pattern.
During the explanation of this pattern the different base patterns will be mentioned where ap-
propriate. In the next paragraph, the concept of the GenericFactory pattern will be introduced.
After that it will be explained by applying it to the Motivation example.

How to design the FactoryTrader?

Within the GenericFactory pattern the FactoryTrader is the central point of communication. It
is responsible for administrating all Factories and for fulfilling requests of clients by delivering
the demanded objects resp. ConcreteProducts. Normally, clients only communicate with the
FactoryTrader. Therefore, the FactoryTrader acts as a trader or broker between clients and
factories when it receives the clients’ requests and then tries to find a factory that can satisfy
them by returning the ConcreteProducts. This concept conceals the existence of factories
from clients and so eases the interchange of the construction mechanism. For example, it

®s. Riehle, D. (1995) for composite patterns
*s. Gamma, E. e.a. (1995), p. 117ff.

®s. Buschmann, F. e.a. (1996), p. 99ff.

®s. Gamma, E. e.a. (1995), p. 107ff.

Draft Submission to EuroPLoP 2000 5

would also be Eossible that the FactoryTrader directly communicates with the requested Con-
creteProducts.’ After a Factory has returned the demanded ConcreteProduct, the Factory-
Trader forwards it to the client. As stated above, the FactoryTrader needs to know all avail-
able Factories. For this reason, it must be able to register and unregister Factories. Further,
after all Factories have been registered, the FactoryTrader has to be able to ask the Facto-
ries, which ConcreteProducts can be constructed by them. The Factories must contain a
service which tells the FactoryTrader if a demanded ConcreteProduct can be built. The Facto-
ries must also offer the actual construction mechanism.

How to design a Factory?

A Factory has to be initialized with the ConcreteProducts that it should be able to construct.
Therefore a Factory must also provide a registration service like the FactoryTrader. Never-
theless, this will differ from the FactoryTrader registry service because a black box factory
should behave like a typical ConcreteFactory of the AbstractFactory pattern. Thus a Factory
should be able to handle product families. This results in the necessary ability to group Con-
creteProducts to a product family and to associate ConcreteProducts with their AbstractPro-
ducts®. So a Factory must supply appropriate operations which, for example, take the identifi-
cation of an AbstractProduct as a parameter and execute the needed internal steps to ad-
ministrate them. Afterwards, the ConcreteProducts can be registered. Thereby the identifica-
tion of the ConcreteProduct, the ConcreteProduct itself, the identification of the corresponding
AbstractProduct must be supplied to enable the association of the ConcreteProduct with the
AbstractProduct.

How to handle Singletons?

Often a product family can contain one or more ConcreteProducts that must behave like Sin-
gletonsg. Singletons have to be treated differently by Factories. Normally, ConcreteFactories
would know which ConcreteProducts are Singletons and implement the corresponding create
methods appropriately. A black box factory doesn’'t know what kind of objects it will have to
handle. Thus, a different solution has to be found. One solution would be to integrate the sin-
gleton specific code in each ConcreteProduct that must be a Singleton in the given context.
The construction process is integrated into each ConcreteProduct. Therefore ConcretePro-
ducts act as Prototypes since they are able to clone themselves. In the simplest case, each
ConcreteProduct must provide a method which creates a clone of the ConcreteProduct and
returns it to the caller. In the case of a Singleton this method would not return a clone, rather
a pointer to itself. Thus, there would be only one instance of the ConcreteProduct. This ap-
proach has one drawback: It couples the singleton characteristic with the ConreteProduct. In
another context, it is possible, however, that the ConcreteProduct is not a Singleton. In such a
situation the clone method would have to be modified. To avoid this and enable that any Con-
creteProduct can become a Singleton at run time, the Factory needs to be designed in an-
other way. During the registration of a ConcreteProduct at a Factory, there must also be a flag
supplied indicating if the ConcreteProduct shall be treated as a Singleton. If the FactoryTrader
then requests a ConcreteProduct, the Factory checks to see if the ConcreteProduct is a Sin-
gleton, and either returns a clone or a pointer to the registered ConcreteProduct.

How to request ConcreteProducts?

The communication between clients and the FactoryTrader hasn’t been covered yet. Clients
need to specify somehow the requested ConcreteProduct. However sometimes clients really
don’'t and actually shouldn’t know, which ConcreteProduct they need. In other cases clients
might need a ConcreteProduct, which is derived from an AbstractProduct of a specific product
family. Again imagine the Motivation example. A client could request the Process object of the
Livelink product family in one case and in the other case the Process object of the Staffware
product family. How can this considerations be realized in a flexible manner? The Factory-
Trader could offer a method, which provides parameters for all of the explained cases. A cli-
ent would then supply the needed parameters and initialize the ones which are not needed to
a default value. For the above example a client would e.g. call the method of the Factory-
Trader like this:

" reflects a special implementation of the Prototype pattern
® the reason for relating ConcreteProducts with their AbstractProducts will be discussed later
°s. Gamma, E. e.a. (1995), p. 127ff.

Draft Submission to EuroPLoP 2000 6

Signature: FactoryTrader::CreateProduct(String AbstractProductlD,
String ConcreteProductID,
String ProductFamily)

Process rProcess=rFactoryTrader.CreateProduct(“Process”,

"Livelink-Wf-Product-Family”);

The above approach is not flexible as every time a new parameter is needed, the method sig-
nature and therefore the class interface must be changed. This can lead to major problems as
clients maybe need to be recompiled and relinked.™ Furthermore, clients need to adapt their
method invocation. These problems can be avoided by applying the PropertyList patternll.
This pattern is a flexible solution to allow the evolution of classes without the modification of
their interfaces. The PropertyList pattern describes how a list of name/value pairs can be
used to hold the parameters of a method. Thus instead of supplying all parameters explicitely
a client just supplies a ProperList object, which contains the parameters. A refactored solution
of the above example is illustrated below:

PropertyList rPropertyList = new PropertyList();
rPropertyList. Add(“APID”,"Process”);
rPropertyList. Add(“PFID”,"Livelink-Wf-Product-Family”);

Process rProcess=rFactoryTrader.CreateProduct(pPropertyList);

Further, parameters can now be added in a very flexible manner by simply using the Add()
method of the PropertyList object.

How to apply GenericFactory?

After the general concepts of the GenericFactory pattern have been illustrated the application
of the pattern in the case of the Motivation example will be discussed. Please note that the
supplied code samples are only given to show the necessary steps.

In order to handle product families of different domains it is useful to use one Factory per do-
main. Let’s take a look at the workflow domain. There, two product families are present and
therefore need to be registered at the Factory object:

Factory rWfFactory = new Factory();

/I Register Product Families
rWfFactory.RegisterProductFamily(“LLFamily”);
rWfFactory.RegisterProductFamily(“SWFamily”);

After registering the product families their abstract members need to be attached :

/I Register AbstractProduct Familiy Members
rWfFactory.RegisterAbstractProduct(“Process”,“LLFamily”);
rWfFactory.RegisterAbstractProduct(“ProcessDef”,“LLFamily”);
rWfFactory.RegisterAbstractProduct(“WfHandler”,“LLFamily”);

rWfFactory.RegisterAbstractProduct(“Process”,“SWFamily”);
rWfFactory.RegisterAbstractProduct(“ProcessDef”,“SWFamily”);
rWfFactory.RegisterAbstractProduct(*“WfHandler”,“SWFamily”);

Then the ConcreteProducts must be registered at the Factory and associated to their Pro-
ductFamilies and AbstractProducts. For example, the LLProcess object has to be attached to
the Livelink family and to the abstract Process object. Moreover, it has to be stated, if the
ConcreteProduct shall be treated as a Singleton. Please recall that the registered Concre-
teProducts are Prototypes and therefore must be instantiated.

1% for example, if C++ is used
5. Sommerlad P. & Ruedi M. (1998)

Draft Submission to EuroPLoP 2000 7

/I Register ConcreteProducts
PropertyList rPropertyList = new PropertyList();
/I Register LLProcess

Process rProcess = new LLProcess();
rPropertyList.Clear();

rPropertyList. Add(“CPID”,”LLProcess”);
rPropertyList. Add(“APID”,”Process”);

rPropertyList. Add(“ProductFamily”,”LLFamily”);
rPropertyList. Add(“Singleton”, false”);

/I Register LLProcessDef

ProcessDef rProcessDef = new LLProcessDef();
rPropertyList.Clear();

rPropertylList. Add(“CPID”,"LLProcessDef");
rPropertyList. Add(“APID”,”"ProcessDef");

rPropertyList. Add(“ProductFamily”,”LLFamily”);
rPropertyList. Add(“Singleton”, false”);

rWfFactory.RegisterConcreteProduct(rProcessDef,rPropertyList);
/I Register LLWfHandler

WfHandler rWfHandler = new LLWfHandler();
rPropertyL.ist.Clear();

rPropertyList. Add(“CPID”,"LLWfHandler");

rPropertyList. Add(“APID”,”"WfHandler”);

rPropertyList. Add(“ProductFamily”,”LLFamily”);

rPropertyList. Add(“Singleton”,”true”);
rWfFactory.RegisterConcreteProduct(rProcessDef,rPropertyList);

/I Register the necessary ConcreteProducts of the SWFamily

Did you notice a possible problem, that would occur during the registration of ConcretePro-
ducts? RegisterConcreteProduct() has been called several times and each time with a differ-
ent type, although parameter type need to be unique. Therefore, all ConcreteProducts must
implement the same interface. In this case, the top level interface is ConcreteProduct. Con-
creteProduct declares the needed Prototype interface. The method Clone() and Create() must

be overriden in every concrete ConcreteProduct.

Draft Submission to EuroPLoP 2000

<<Interface>> <<Interface>> <<Interface>>
Process Process Def WeHandler

I (R

LLProcess SWProcess SWProcessDef LLProcessDef SWWwiHandler LLWfHandler

//
~_ \ / -
\ \ \ / / /
™ <<Interface>> /\/
ConcreteProduct

Clone()
Construct()

Figure 2: Interface Implementations

Thus during the registration process the pointers to the ConcreteProducts are upcasted to
ConcreteProduct. This also forces clients to downcast to the interface of the requested type:

PropertyList rPropertyList = new PropertyList();
rPropertyList. Add(“APID”,"Process”);
rPropertyList. Add(“PFID”,"Livelink-Wf-Product-Family”);

Process rProcess=(Process)pFactoryTrader.CreateProduct(pPropertyList);

After the ConreteProducts have been registered the default ProductFamily needs to be speci-
fied, as the Factory has to know, which ConcreteProduct to deliver, if only an APID is supplied
as a parameter.

/I Set default Product-Family
rFactory.SetDefaultFamily(“LLFamily”);

Now the Factory is operational and can be attached to the FactoryTrader. Thereby a unique
ID has to be supplied.

/I Attach WfFactory to the FactoryTrader
FactoryTrader rFactoryTrader=FactoryTrader::Get();
rFactoryTrader.Register(rWfFactory,”"WorkflowFactory”);

How to handle Product Families?

It has been pointed out that a GenericFactory must administrate product families and their
related ConcreteProducts. This housekeeping can be realized with the following approach: A
GenericFactory creates a ProductFamily object for each registered product family. A Product-
Family is identified by its unique identification. If a ConcreteProduct is registered a Concre-
teProductinfo object (CPInfo) is constructed and initialized with the ID of the ConcreteProduct.
Furthermore the ConcreteProduct is attached to the CPInfo object. Afterwards the CPInfo
object is associated to its corresponding ProductFamily object. Thereby it is associated with
its concrete and abstract product id. This allows that a ConcreteProduct can be requested
either by a CPID or an APID.

Known Uses

WISE: WISE allows the integration of different workflow management systems (wms) in het-
erogenous and complex system landscapes. In order to deal with several wms in a flexible

Draft Submission to EuroPLoP 2000 9

manner, the GenericFactory pattern has been used to develop a generic infrastructure for the
creation and the delivery of wms specific objects.

Related Patterns

AbstractFactory

GenericFactory is an extension of the AbstractFactory pattern as it is applyable in the
same context but in a generic way. AbstractFactory uses inheritance where GenericFac-
tory uses composition.

ProductTrader

GenericFactory is closely related to ProductTrader as it also allows the specification and
configuration of ConcreteProducts. Further, both patterns decouple clients from the con-
crete construction mechanism. Nevertheless, GenericFactory focuses on product families
where ProductTrader concentrates on single objects. Moreover, GenericFactory ad-
dresses the construction of Singletons.

FactoryChain

FactoryChain also uses composition to extend functionality, but on factory level. Concrete
factories are linked together in a chain and if a factory cannot handle the request it for-
wards it to its successor.

» FactoryMethod

« Prototype

e Singleton

Bibliography

Baumer, D. & Riehle D. (1996) Late Creation (Product Trader), A Creational
Pattern, Submitted to PloP'96

Buschmann, F. e.a. (1996): A System of Patterns, Pattern-Oriented
Software-Architecture, Wiley & Sons, West
Sussex 1996

Gamma, E. e.a. (1995): Design Patterns, Elements of Reusable Ob-
ject-Oriented Software-Design, Addison-
Wesley, Bonn 1995

Riehle, D. (1997): Composite Design Patterns, OOPSLA 1997,
ACM Press, p. 218-228, 1997

Sommerlad P. & Riuedi M. (1998): Do-it-yourself Reflection, IFA Informatik,

Zurich, Submitted to EuroPLoP 98

Draft Submission to EuroPLoP 2000 10

