
Transforming
Condit ionals

Oscar Nierstrasz and Stéphane Ducasse
Software Composition Group, University of Berne1

Abstract. We describe several related reengineering patterns concerned with
removing conditionals from object-oriented code. Transform Conditional to Sub-
classing makes a class more extensible by transforming complex conditional
code that tests immutable state into a single polymorphic call to an operation
which will be implemented by a different subclass for each case of the condition-
al. Transform Conditional to Polymorphism transforms conditional code that tests
the type of an object into a polymorphic call to a new method, thereby reducing
client/provider coupling.

Transform Conditional to Subclassing
Make a class more extensible by transforming complex conditional code that tests immutable
state into a single polymorphic call to an operation which will be implemented by a different
subclass for each case of the conditional.

Problem
A class is hard to modify or subclass because it implements multiple behaviours depending on
the value of some immutable attribute.

Context

You need to modify the functionality of a class or add new functionality. You have access to the
source code of the class and of clients that instantiate it.

Symptoms
• The class you want to modify has long methods with complex conditional branches.
• Instances of the class seem to represent multiple data types each with different behaviour.
• The expression being tested in the conditional represents type information.
• Conceptually simple extensions require many changes to the conditional code.
• Subclassing is next to impossible without duplicating and adapting the methods with

conditional code.

1. Authors’ address: Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10, CH-3012 Berne,
Switzerland. Tel: +41 (31) 631.4618. Fax: +41 (31) 631.3965.
E-mail: {oscar, ducasse}@iam.unibe.ch. WWW: http://www.iam.unibe.ch/~scg.

2. Transform Conditional to Subclassing
Solution
Associate each case of the conditional with a new subclass of the original class. Replace the
conditional code with a call to a new hook method. In each of the new subclasses, implement
the hook method with the code corresponding to that case in the original case statement.

Structure/Participants

Detection
• Look for long methods with complex decision structures on some immutable attribute of

the object that models type information. In particular look for attributes that are set in the
constructor and never changed.

• Especially look for classes where multiple methods switch on the same attribute. This is
often a sign that the attribute is being used to simulate a type.

• It may help to use a tool that sorts methods by lines of code or visualizes classes and
methods according to their size. Alternatively, search for classes or methods with a high
incidence of conditional statements.

• For languages like C++ or Java where it is common to store the implementation of a class
in a separate file, it is straightforward to search for and count the incidence of conditional
keywords (if, else, case, etc.). On a UNIX system, for example,

grep ‘switch’ ‘find . -name "*.cxx" -print‘

enumerates all the files in a directory tree with extension .cxx that contain a switch.
Other text processing tools like agrep offer possibilities to pose finer granularity queries.
Text processing languages like Perl may be better suited for evaluating some kinds of
queries, especially those that span multiple lines.

C/C++: Legacy C code may simulate classes by means of union types. Typically the union
type will have one data member that encodes the actual type. Look for conditional state-
ments that switch on such data members to decide which type to cast a union to and
which behaviour to employ.
In C++ it is fairly common to find classes with data members that are declared as void
pointers. Look for conditional statements that cast such pointers to a given type based on
the value of some other data member. The type information may be encoded as an enum
or (more commonly) as a constant integer value.

A

m() ...
case B: ...
case C: ...
case D: ...
...

A

m()
hook()

B

hook()

...
hook()
...

C

hook()

D

hook()

Transform Conditional to Subclassing 3.
Instead of defining subclasses of the class containing the conditional statement, consider
also whether the types to which the void pointer is cast can be integrated into a single
hierarchy.

Ada: Because Ada83 did not support polymorphism (or subprogram access types), discrim-
inated record types are often used to simulate polymorphism. Typically an enumeration
type provides the set of variants and the conversion to polymorphism is straightforward
in Ada95.

Smalltalk: Smalltalk provides only a few ways to manipulate types. Look for applications of
the methods isMemberOf: and isKindOf:, which signal explicit type-checking. Type
checks might also be made with tests like self class = anotherClass, or with prop-
erty tests throughout the hierarchy using methods like isSymbol, isString, isSe-
quenceable, isInteger.

Steps
• Identify the class to transform and the different conceptual classes that it implements. An

enumeration type or set of constants will probably document this well.

• Introduce a new subclass for each behaviour that is implemented. Modify clients to in-
stantiate the new subclasses rather than the original class. Run the tests.

• Identify all methods of the original class that implement varying behaviour by means of
conditional statements. If the conditionals are surrounded by other statements, move
them to separate, protected hook methods. When each conditional occupies a method of
its own, run the tests.

• Iteratively move the cases of the conditionals down to the corresponding subclasses, pe-
riodically running the tests.

• The methods that contain conditional code should now all be empty. Replace these by
abstract methods and run the tests.

• Alternatively, if there are suitable default behaviours, implement these at the root of the
new hierarchy.

• If the logic required to decide which subclass to instantiate is non-trivial, consider encap-
sulating this logic as a factory method of the new hierarchy root. Update clients to use
the new factory method and run the tests.

Tradeoffs

Different clients now depend on different subclasses of the original class, thereby improving
modularity. Furthermore, functionality can now be extended by defining additional subclasses,
without affecting clients of the existing classes.

The larger number of classes makes the design more complex, and potentially harder to un-
derstand. If the original conditional statements are simple, it may not be worthwhile to perform
this transformation.

4. Transform Conditional to Subclassing
If the case statements test more than one attribute, it may be necessary to support a more com-
plex hierarchy, possibly requiring multiple inheritance. Considering splitting the class into
parts, each with its own hierarchy.

If you do not have access to the source code of the clients, it may be difficult or impossible to
apply this pattern since you will not be able to change the calls to the constructors. Evaluate
carefully whether it is possible to present the transformed design through the old interface.

If the conditional code tests mutable state of the object, consider instead applying Transform
Conditional to Polymorphism. Otherwise, if state of other objects is tested, such as arguments
to the method, then consider applying Transform Conditional to Polymorphism.

Example

A message class wraps two different kinds of messages (TEXT and ACTION) that must be serial-
ized to be sent across a network connection as shown in the code and the figure. We would like
to be able to send a new kind of message (say VOICE), but this will require changes to several
methods of Message.

Since Message conceptually implements two different classes, Text_Message and
Action_Message, we introduce these as subclasses of Message. We introduce constructors for
the new classes, we modify the clients to construct instances of Text_Message and
Action_Message rather than Message, and we remove the set_value() methods. Our regres-
sion tests should run at this point.

Message

set_value(action Integer)
send(channel Channel)
set_value(text String)
receive(channel Channel)

Client1 Client2

Figure 1 Initial design and source code.

class Message {
public:

Message();
set_value(char* text);
set_value(int action);
void send(Channel c);
void receive(Channel c);
...

private:
void* data_;
int type_;
const int TEXT = 1;
const int ACTION = 2;
...

}

Message::send(Channel c) { ...
switch (type_) {
case TEXT:

...
case ACTION:

...
}; ...

}
Client1::doit() { ...

Message myMessage =
new Message();

myMessage.setValue("...");
...

}

Transform Conditional to Subclassing 5.
Now we find methods that switch on the type_ variable. In each case, we move the entire
switch statement to a separate, protected hook method, unless the switch already occupies the
entire method. In the case of send(), this is already the case, so we do not have to introduce a
hook method. Again, all our tests should still run.

Now we iteratively move cases of the switch statements from Message to its subclasses. The
TEXT case of Message::send() moves to Text_Message::send() and the ACTION case
moves to Action_Message::send(). Every time we move such a case, our tests should still
run.

Finally, the original send() method is now empty, so it can be redeclared to be abstract (i.e.,
virtual void send(Channel) = 0). Again, our tests should run.

Message

send(channel Channel)
receive(channel Channel)

Client1 Client2

Text_Message

Text_Message(String)
send(channel Channel)
receive(channel Channel)

Action_Message

Action_Message(int)
send(channel Channel)
receive(channel Channel)

class Message {
public:

virtual void
send(Channel c) = 0;

virtual void
receive(Channel c) = 0;

...
};

class Text_Message: public Message
{
public:

Text_Message(char* text);
void send(Channel c);
void receive(Channel c);

private:
char* text;

...
};

class Action_Message: public
Message {
public:

Action_Message(int action);
void send(Channel c);
void receive(Channel c);

private:
int action;

...
};

Client1::doit() { ...
Message myMessage = new

Text_Message("...");
...

}

Figure 2 Resulting hierarchy and source code.

6. Transform Conditional to State
Rationale

Classes that masquerade as multiple data types make a design harder to understand and extend.
The problem may arise for various reasons:

• The class may have been repeatedly extended with code to handle special cases to satisfy
the needs of many different clients. Whereas the original design of the class may have
been simple, it now contains several methods with complex conditional logic over its at-
tributes.

• Programmers may have decided not to define subclasses to handle special cases to avoid
cluttering the name space, or to keep changes and extensions local to a single class. It is
rarely obvious when varying behaviour is better implemented by subclassing than by
conditional code. (In Smalltalk, for example, True and False are subclasses of Boolean,
but this is not the case in most other object-oriented languages.)

• In languages without polymorphism, case statements may be used to simulate polymor-
phic dispatch. Even if a later version of the language does support polymorphism (e.g.,
C++ vs. C, or Ada 95 vs Ada 83), coding conventions in place may encourage program-
mers to continue to apply the outdated idiom.

By transforming such classes to hierarchies that explicitly represent the multiple data types,
you make your design more transparent, and consequently easier to maintain.

Related Patterns

Replace Type Code with Subclasses, Refactoring To Specialize.

Transform Conditional to State
Like Transform Conditional to Subclassing but the attributes we switch on are not constant,
so the solution applies the State design pattern.

Related Patterns

Replace Type Code with State.

Transform Conditional to Polymorphism
Transform conditional code that tests the type of an object into a polymorphic call to a new
method, thereby reducing client/provider coupling.

Problem

It is hard to extend a provider hierarchy because many of its clients perform type checks on its
instances to decide what actions to perform.

Transform Conditional to Polymorphism 7.
Context

You want to add a new subclass to a provider hierarchy. You have access to both the client and
provider source code.

Symptoms
• Clients of the class you want to subclass have long conditional methods that test the type

of provider instances.

• Adding a new subclass to the provider hierarchy requires making changes to clients, es-
pecially where there tests occur.

Solution

Replace the client’s conditional code by a call to a new method of the provider hierarchy. Im-
plement the new method in each provider class by the appropriate case of the original condi-
tional code.

Structure/Participants

Detection

Apply essentially the same techniques described in Transform Conditional to Subclassing to
detect case statements, but look for conditions that test the type of a separate service provider

Client

m()

...
switch (a.class)
case B: ...
case C: ...
case D: ...
...

A

B C D

A

doit()

B

doit()

C

doit()

D

doit()

Client

m()

...
a.doit()
...

8. Transform Conditional to Polymorphism
which already implements a hierarchy. You should also look for case statements occurring in
different clients of the same provider hierarchy.

C++: Legacy C++ code is not likely to make use of run-time type information (RTTI). In-
stead, type information will likely be encoded in a data member that takes its value from
some enumerated type representing the current class. Look for client code switching on
such data members.

Ada: Detecting type tests falls into two cases. If the hierarchy is implemented as a single dis-
criminated record then you will find case statements over the discriminant. If the hierar-
chy is implemented with tagged types then you cannot write a case statement over the
types (they are not discrete); instead an if-then-else structure will be used.

Smalltalk: As in Transform Conditional to Subclassing, look for applications of isMem-
berOf: and isKindOf:, and tests like self class = anotherClass.

Java: Look for applications of the operator instanceof, which tests membership of an ob-
ject in a specific, known class. Although classes in Java are not objects as in Smalltalk,
each class that is loaded into the virtual machine is represented by a single instance of
java.lang.Class. It is therefore possible to determine if two objects, x and y belong to the
same class by performing the test:

x.getClass() == y.getClass()

Alternatively, class membership may be tested by comparing class names:
x.getClass().getName().equals(y.getClass().getName())

(Recall that == compares object references, whereas equals() compares object values.)

Steps
• Identify the clients performing explicit type checks.

• Add a new, empty method to the root of the provider hierarchy representing the action
performed in the conditional code.

• Iteratively move a case of the conditional to some provider class, replacing it with a call
to that method. After each move, the regression tests should run.

• When all methods have been moved, each case of the conditional consists of a call to the
new method, so replace the entire conditional by a single call to the new method.

• Consider making the method abstract in the provider’s root. Alternatively implement
suitable default behaviour here.

Tradeoffs

The pattern cannot be applied if you don’t have access to the client source code.

If the provider hierarchy is not a real inheritance hierarchy, you must transform it first.

It may well be that multiple clients are performing exactly the same test and taking the same
actions. In this case, the duplicated code can be replaced by a single method call after one of the

Transform Conditional to Polymorphism 9.
clients has been transformed. If clients are performing different tests or taking different actions,
then the pattern must be applied once for each conditional.

If the case statement does not cover all the concrete classes of the provider hierarchy, a new
abstract class may need to be introduced as a common superclass of the concerned classes. The
new method will then be introduced only for the relevant subtree. Alternatively, if it is not pos-
sible to introduce such an abstract class given the existing inheritance hierarchy, consider im-
plementing the method at the root with either an empty default implementation, or one that
raises an exception if it is called for an inappropriate class.

Refactoring the interface will affect all clients of the provider classes and must not be under-
taken without examining the full consequences of such an action.

If the conditionals are nested, the pattern may need to be applied recursively.

Example

The code in figure 3 illustrates misplaced responsibilities since the client must explicitly type-
check instances of Telephone to determine what action to perform..

After applying the pattern the client code will look like this:

void makeCalls(Telephones *phoneArray[]) {

for(Telephone *p = phoneArray; p; p++)

p->makeCall();

}

void makeCalls(Telephone * phoneArray[]) {
for (Telephone *p = phoneArray; p; p++) {

switch(p->phoneType()) {
case TELEPHONE::POTS:

POTSPhone *potsp = (POTSPhone *) p;
potsp->tourneManivelle();
potsp->call();
break;

case TELEPHONE::ISDN:
ISDNPhone *isdnp = (ISDNPhone *) p;
isdnp->initializeLine();
isdnp->connect();
break;

case TELEPHONE::OPERATORS:
OperatorPhone *opp = (OperatorPhone *) p;
opp->operatormode(on);
opp->call();
break;

case TELEPHONE::OTHERS:
default: error(....);

}
}

}

Figure 3 Explicit type checks in client code.

10. Transform Conditional to Polymorphism
Rationale

Explicit type checks in clients are a sign of misplaced responsibilities since they increase cou-
pling between clients and providers. Shifting these responsibilities to the provider will have the
following consequences:

• The client and the provider will be more weakly coupled since the client will only need
to explicitly know the root of the provider hierarchy instead of all of its concrete sub-
classes.

• The provider hierarchy may evolve more gracefully, with less chance of breaking client
code.

• The size and complexity of client code is reduced. The collaborations between clients
and providers become more abstract.

• Abstractions implicit in the old design (i.e., the actions of the conditional cases) will be
made explicit as methods, and will be available to other clients.

• Code duplication may be reduced (if the same conditionals occur multiply).

Related Patterns

Riel states, "Explicit case analysis on the type of an object is usually an error. The designer
should use polymorphism in most of these cases" [5].

Transform Conditional to Subclassing, Replace Conditional with Polymorphism.

Known Uses

This pattern has been applied in one of the Famoos case studies written in Ada. This consider-
ably decreased the size of the application and improved the flexibility of the software. In one of
the Famoos C++ case studies, explicit type checks were also implemented statically by means
of preprocessor commands (# ifdefs).

Null Object

Like Transform Conditional to Polymorphism except that the attribute we are switching is
whether the object reference is null or not. Shift the responsibility for deciding what to do to the
provider hierarchy by introducing a special Null object [6].

Replace Type Code with Subclasses

Provides a recipe for carrying out the refactorings required for Transform Conditional to
Subclassing [2].

Transform Conditional to Polymorphism 11.
Replace Conditional with Polymorphism

Provides a recipe for carrying out the refactorings required for Transform Conditional to Pol-
ymorphism [2].

Replace Type Code with State

Provides a recipe for carrying out the refactorings required for Transform Conditional to
State [2].

Template Method

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Tem-
plate Method lets subclasses redefine certain steps of an algorithm without changing the algo-
rithm’s structure [3].

Refactoring To Specialize

W. Opdyke [4] proposed using class invariants as a criterion to simplify conditionals.

Acknowledgements

The material presented here is based loosely on an earlier published paper [1]. Many thanks to
members of the Software Composition Group who workshopped drafts of this paper.

[1] Stéphane Ducasse, Robb Nebbe and Tamar Richner, “Two Reengineering Patterns: Eliminat-
ing Type Checking,” Proceedings of the 4th European Conference on Pattern Languages of
Programming and Computing, 1999, Paul Dyson (Ed.), UVK Universitätsverlag Konstanz
GmbH, Konstanz, Germany, July 1998.

[2] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refactoring: Im-
proving the Design of Existing Code, Addison-Wesley, 1999.

[3] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, Addison
Wesley, Reading, MA, 1995.

[4] William F. Opdyke, “Refactoring Object-Oriented Frameworks,” Ph.D. thesis, University of
Illinois, 1992.

[5] Arthur J. Riel, Object-Oriented Design Heuristics, Addison-Wesley, 1996.

[6] Bobby Woolf, “Null Object,” Pattern Languages of Program Design 3, Robert Martin, Dirk
Riehle and Frank Bushmann (Ed.), Addison-Wesley, 1998, pp. 5-18.

	Transforming Conditionals
	Transform Conditional to Subclassing
	Transform Conditional to State
	Transform Conditional to Polymorphism
	Null Object
	Replace Type Code with Subclasses
	Replace Conditional with Polymorphism
	Replace Type Code with State
	Template Method
	Refactoring To Specialize

