
Metacommand
Markus Völter, voelter@acm.org

Version 0.2, 15.02.2000

INTENT
Metacommand enhances the Command pattern by providing a facility to enhance or
modify the common behaviour of the command classes used in a system at any time
without modifying the command classes themselves.

PROBLEM AND MOTIVATION
In this paper I assume that the reader is familiar with the Command pattern as it is
described by the Gang of Four [1]. In short, Command describes a means to
encapsulate requests in objects, thereby allowing well structured integration into user
interfaces, providing logging or queueing facilities as well as enabling undo / redo.

However, the pattern requires that these additional features are known when the
command classes are programmed. It is not possible to dynamically add or remove
features. For example, it would be interesting to add logging facilities to all command
classes in a system, if debugging becomes necessary or the customer requires logging of
who did what. Or it might be necessary to add or change a permissions check before the
execution of every command, and execute the command only if the check allows it. It
should be possible to add these features dynamically, at runtime, without modifying
the command classes themselves. The last point is especially important, because in
general, there are quite many command classes in a system.

The pattern resolves the following forces:

� The common behaviour of your command classes should be kept flexible.
� No additional runtime overhead should be imposed by providing this flexibility
� The solution should be as transparent as possible, i.e. it should be used more or less

like the ordinary Command.
� The modification of the common behaviour of the commands should not require

changes in the command classes themselves.

APPLICABILITY
This pattern can be used whenever Command is applicable, and when the following
additional features are required:

� The common behaviour of the command objects should be kept flexible.
� The modification of the common behaviour of the command classes should be

possible without modification of the command’s classes themselves.

mailto:voelter@acm.org

SOLUTION

Outline
Whenever a ConcreteCommand object is created, the system creates a MetaCommand and
wraps the ConcreteCommand with it. When the ConcreteCommand is executed, the
MetaCommand is executed instead. The MetaCommand is responsible for in turn
executing the ConcreteCommand during its own execution. The Abstract Factory [1]
pattern is used to implement the creation policy.

Structure
The Command class is an abstract base class for user-defined commands that are used in
the application. Like in the Command pattern, there is an abstract execute()method that
gets called by the command-executing program entity, independent of the concrete
command class.

In addition, the Command class contains a static reference to a CommandFactory object,
which is responsible for wrapping a ConcreteMetaCommand object around a
ConcreteCommand object.

Participants
Command Abstract base class for application specific concrete

command classes.

MetaCommand Abstract base class for application specific meta command
classes. Wraps around (contains) a concrete command
object.

CommandFactory Responsible for setting up the wrapping between the
ConcreteCommand and the ConcreteMetaCommand.

ConcreteMetaCommand An application specific MetaCommand class, that executes
the ConcreteCommand during its own execution. It contains
the code common to ConcreteCommands.

ConcreteCommandFactory A concrete implementation of CommandFactory that wraps

an instance of a ConcreteMetaCommnad around a
ConcreteCommand.

ConcreteCommand An application specific command class.

The pattern works by automatically wrapping a ConcreteCommand created by the
application with a ConcreteMetaCommand. The programmer has to follow some
programming guidelines to make this process work.

First, the ConcreteMetaCommand’s execute() method does everything that is common to
all commands. During its own execution, it has to call the wrapped ConcreteCommand’s
execute() operation. For the application programmer, it looks like the ConcreteCommand’s
execute() operation would be executed.

Second, if a programmer creates an instance of a ConcreteCommand, the system will
return an instance of the ConcreteMetaCommand (as it is determined by the
ConcreteCommandFactory in use) that contains the required ConcreteCommand. Because
such semantics are not possible with constructors, a special static create() operation is
used. Every ConcreteCommand class can have one or more create() operations with a
distinct signature. It is important to realize that the ConcreteCommand.create() operations
do not return an instance of ConcreteCommand, but an instance of Command. This is
because the create() operations wrap the required ConcreteCommand with the
appropriate ConcreteMetaCommand. To achieve this, it calls the wrap() operation on the
created ConcreteCommand. wrap() calls the factory’s wrapCommand() method, which in
turn creates a ConcreteMetaCommand and wraps it around the ConcreteCommand (details
follow below).

In general, the create() operation of a ConcreteCommand will usually look something like
this (Java example):

class ConcreteCommand extends Command {

public static Command create(String anArgument) {

ConcreteCommand c = new ConcreteCommand();

// process arguments with c

c.anArgument = anArgument;

// call wrap to wrap the created ConcreteCommand

return c.wrap();

}

public void execute()

}

INTERACTIONS

Setting up the factory
At the beginning of a program, the factory that should be used by the application must
be set by the application programmer. The abstract class Command contains a static
reference to an instance of a CommandFactory object. To set this reference, the
programmer calls the static operation setFactory() with an instance of a
ConcreteCommandFactory as the only parameter.

Creating a ConcreteCommand object
The sequence diagram below shows what’s going on when a ConcreteCommand object is
created.

The client application calls a static create() operation on the ConcreteCommand class, of
which an object is required. This operation then creates an instance of its own class,
processes all its aguments, and then calls wrap() on the newly created object.

The wrap() operation calls the wrapCommand() operation on the factory that has been set
before with the ConcreteCommand as a parameter. The factory determines which
ConcreteMetaCommand should be used, creates an instance of it, and then sets the passed
ConcreteCommand to be the contained command of the newly created
ConcreteMetaCommand. This metacommand is then returned to the client application.

Executing the command
Just as in the conventional Command pattern, a command is executed by invoking its
execute() operation. The difference here is, that the invocation reaches the
ConcreteMetaCommand‘s execute(), which in turn calls the ConcreteCommand’s execute().
The ConcreteMetaCommand is free to add whatever code it wants, examples follow
below.

CONSEQUENCES
Using this pattern has the following advantages:

� The policy of which ConcreteMetaCommand should be used for a certain
ConcreteCommand object is encapsulated in the ConcreteCommandFactory. By setting
another factory, the policy can be changed, even at runtime.

� The pattern is totally transparent to applications that use the ordinary Command
pattern. After all, the most important advantage of the Command pattern is that the

different kinds of ConcreteCommand objects are treated as if they were just
Commands, except upon instance creation. This is still true if Metacommand is used
instead.

One the other hand, the pattern also has the following potential drawbacks:

� The ConcreteCommand objects cannot be created with the help of a constructor.
Instead, a static create() operation must be used.

� The pattern might impose some slight overhead in the execution of a
ConcreteCommand, because an additional layer of indirection is added
(ConcreteCommand’s execute() is called through ConcreteMetaCommand’s
execute()).However, if no ConcreteCommandFactory is set in the Command class, the
wrap() operation can directly return itself (this). Then, the ConcreteCommand
eventually gets executed directly, and the pattern adds absolutely no overhead to
command execution.

� The pattern relies on the wrapping MetaCommand object to call the execute()
operation of the contained Command. However, it cannot be easily enforced that this
is actually done by the MetaCommand. In some cases this is intended (e.g. not
executing a Command if when the MetaCommand determines that the permissions
required to execute the Command are not available). On the other hand, it is possible
to actually modify the behaviour of Command classes, and not just to add behaviour.
This might be a problem in certified / well tested / safety relevant systems.

EXAMPLES AND SAMPLE CODE

The simplest case
Let‘s begin with a very simple implementation of the Command class. Java is used for
the examples.

public abstract class Command {

protected static CommandFactory factory;

public static void setFactory(CommandFactory cf) {

factory = cf;

}

public Command wrap() {

if (factory == null) return this;

return factory.wrapCommand(this);

}

public abstract void execute();

}

The Command class above has the important feature, that whenever no factory is set,
the wrap() operation returns this, i.e. it returns the object on which it was called. So
whenever no factory is set, the system behaves just like the standard Command pattern.
The check whether the factory is null is implemented very efficiently in Java, and
imposes nearly no performance overhead.

Logging
The above example might be the initial implementation for a software system. Later,
when the system is deployed, it might become necessary to log all executed commands.
This can be achieved by the following three step process:

First, a corresponding MetaCommand class is created. It is called LogMetaCommand in the
example and could look something like the following:

public class LogMetaCommand extends MetaCommand {

public void execute() {

System.out.println((new Date()).toString() +

" executing : "+containedCommand);

containedCommand.execute();

}

}

The second step is to create a factory that wraps the ConcreteCommands with a
LogMetaCommand. This is also very simple and straightforward:

public class LogCommandFactory extends CommandFactory {

public Command wrapCommand(Command c) {

LogMetaCommand lcmd = new LogMetaCommand();

lcmd.setContainedCommand(c);

return lcmd;

}

}

The third step is the simplest of the three: Setting the factory object in the Command
class. The following program does just that:

public class Test {

public Test() {

Command.setFactory(new LogCommandFactory());

Command t = TestCommand.create("Hallo");

t.execute();

}

public static void main(String[] args) {

Test test = new Test();

}

}

The above piece of code has the consequence, that every command execution in the
system gets logged. This is true for command classes are already used in the system, as
well as for those, that are introduced later.

Permissions
Often, it becomes necessary to retrofit a system with security features, i.e. that certain
commands may only be executed by certain users (or groups of users). Once again,
Metacommand provides a simple solution for this problem by using MetaCommands
that check the permissions before executing the contained command. The check itself
could be delegated to another class:

public class PermissionMetaCommand extends MetaCommand {

public void execute() {

if (PermissionManager.instance().allows(containedCommand)

containedCommand.execute();

else showMessage(„Required permissions not available!“);

}

}

Queueing
In some applications, it might become necessary to queue some command for
asynchronoues execution. The Metacommand pattern can be used to implement such a
queueing facility. Two building blocks are necessary here. A QueueingMetaCommand
and a QueueFactory.

Upon execution, the QueueingMetaCommand puts the containedCommand into a queue
which is then processed asynchronously by another thread. The QueueFactory
determines whether the command should be queued or not. If it should not be queued,
then the factory does nothing and returns the command itself. If, on the other hand, the
command shoud be queued, it wraps the command with a QueueingMetaCommand.

Note: If the time between enqueueing the commands and their execution is long, and if
the factory is replaced during this timespan, then the already enqueued (and therefore
wrapped) command objects will not change their behaviour to reflect the chances
imposed by the new factory.

ANOTHER SOLUTION – AND WHY IT DOES NOT WORK
Another solution that comes to mind immediately is simply to provide the Command
classes with a before() and after() method. It would be the responsibility of the
ConcreteCommand classes execute() methods to call them. This does not work because:

� You cannot give different groups of ConcreteCommand classes different behaviour –
to do this, wou yould have to insert an additional layer of abstract command
classes. But because you do not know the grouping of the ConcreteCommands in
from the beginning, you would have to change the class hierarchy constantly, every
time, you want to change the grouping.

� You cannot change anything at runtime, except by using state dependent case
statements in the command classes before() and after() methods.

� Permissions and queueing cannot be implemented cleanly this way because the
result of the before() method does not influence the behaviour of the main execute()
method. This could be achieved by using exceptions somehow, but this is not a very
practical solution. (Example, Queueing: The before method could place the itself
(this) into a queue, then set a flag, which is tested by the execute() method after its
before() call. If set, the method returns. When execute() is once again called, this time
by the thread that processes the queue, before() must not be called again, instead the
core of the execute() operation must be run. This can also be achieved by using a
couple of flags. But all in all, this is not a very elegant solution).

� Composability (as described in the next section) is not possible.

VARIANTS AND IMPROVEMENTS

Multiple Layers
It is possible to compose multiple layers of MetaCommands. If a system contains a
LogMetaCommand class, a QueueingMetaCommand class and a PermissionMetaCommand
class, then it is easy to build systems that have all features just by creating another
factory:

public class LQPCommandFactory extends CommandFactory {

public Command wrapCommand(Command c) {

LogMetaCommand lcmd = new LogMetaCommand();

lcmd.setContainedCommand(c);

QueueingMetaCommand qcmd = new QueueingMetaCommand();

qcmd.setContainedCommand(lcmd);

PermissionMetaCommand pcmd = new PermissionMetaCommand();

pcmd.setContainedCommand(qcmd);

return pcmd;

}

}

The result of the work of this factory is the following containment structure:

Upon execution, the commands are executed “outside-in“. First, the
PermissionMetaCommand checks whether the command is allowed to be executed. If
so, the command is put in a queue. Upon execution, a log message is created and then,
finally, the command itself gets executed. Note, that the order wrap order of the
commands is significant: If, for example, permission checking is contained inside of
logging, the command will be logged although perhaps it will not be executed. The
same is true for queueing and permissions. There is no use of checking a permission
after it has been inserted into the queue (because they will be executed asychronously).

Factory as Decorator
If many different combinations of MetaCommands are necessary in an application, it is
possible to design the factories according to the Decorator (aka Wrapper) pattern. This
makes it possible to wrap several factories around each other, thereby achieving
composability in the area of command creation.

Controlling the Factory
If there is no general common policy about which MetaCommand the factory should use,
then it might make sense to add additional create...(...) operations on the Command
classes that have other names or additional parameters. This makes it possible for the
creator of a command to determine the behaviour of the factory at runtime, because the

PermissionMetaCommand

QueueingMetaCommand

LogMetaCommand

c

factory can use the supplied parameters to determine whether a MetaCommand will be
set or not, and to give the MetaCommand additional parameters.

RELATED PATTERNS
The Metacommand pattern of course has a close relationship to the Command pattern –
it is an extension. The Command pattern is described in the classic Gang of Four book
[1]. In addition, Metacommand makes use of the Abstract Factory pattern, which is also
described in [1]. The containment structure of the commands (and of the factories, see
VARIANTS AND IMPROVEMENTS) can be seen as an implementation of the Decorator
pattern [1]. Its behaviour (recursively calling execute()) can be explained by with the
help of the Chain of Responsibility pattern also described in [1].

Another pattern that extends Command and adresses quite similar concerns is Peter
Sommerlad’s Command Processor pattern [2]. In the Command Processor pattern,
commands are not executed directly. Instead, they are executed by a command
processor. This component can be used to implement additional code, for logging,
queueing etc. So, instead of wrapping MetaCommand objects around each
ConcreteCommand to implement common behaviour, the Command Processor pattern
locates this common code into the command processor component. The decision which
of the two patterns should be used, could be guided by the following observation:

� The Command Processor leaves the creation of commands unchanged and requires
modification at all locations where commands are executed. So whenever it is not
possible (or feasible) to modify the creation of command objects, the Command
Processor pattern should be used.

� The MetaCommand leaves the execution of commands unchanged but requires
changes in the code at all locations, where commands are created. So whenever it is
not possible (or feasible) to modify the execution of commands, the MetaCommand
pattern should be used.

Because of the above, the Metacommand pattern as well as the Command Processor
pattern can be used in refactorization projects, where it is necessary to introduce
unanticipatet features into a software system.

OTHER RELATED WORK
It is also interesting to look at the relationship to aspect-oriented programming (AOP,
[3]). AOP supports the definition of cross-cutting concerns of a software system in a
single entity, called an aspect. Aspects can introduce new methods into (one or more)
classes, and can add before and after code to methods. The following piece of AspectJ [4]
code adds logging to the command classes:

aspect Log {

crosscut commands():

public void execute() & com.ourcompany.theproduct.commands.*;

static advice commands() {

before {

System.out.println((new Date()).toString() +

" executing : "+containedCommand);

}

}

}

The above piece of code defines an aspect called Log. It applies to all classes in the
com.outcompany.theproduct.commands package. In these classes, it advices (i.e. annotates,
modifies) the public void execute() method. It does so by introducing before code, that
simply puts out the log message. The aspect is “woven“ into the ordinary Java code by
an AspectJ-supplied utility called the aspect weaver to produce ordinary Java code.

One could also see the Metacommand pattern as a way to dynamically change the class
of the commands, because arbitrary behaviour can be added or removed at any time.
This can also be achieved by using meta level programming, if it is available in the
language in use. This is where the pattern borrows its name.

KNOWS USES
The pattern was used in the ThoughtPad application [5], a tool create topic maps. Here,
the pattern has been applied after the program has been finished (it already used the
conventional Command pattern for all user interface actions). As described above, only
the creation of the commands had to be changed. The Metacommands have been used
to implement permissions into the program.

IBM’s PRODIKOS project uses the Metacommand pattern in its user interface
architecture. The system will later be integrated with Lotus Workflow, although it is
not yet clear at the beginning of the project how this integration will look like. A single
metacommand will be used for all command objects, that analyses the concrete
command and then triggers the correct process in Lotus Workflow.

ACKNOWLEDGEMENTS
I’d like to thank the participants of MATHEMA’s design patterns courses (Feb. 14 – Feb.
21, 2000). They provided many useful comments and improvements to this paper.

REFERENCES
[1] Gamma, Helm, Johnson, Vlissides; Design Patterns, elements of reusable software

design, Addison-Wesley 1996

[2] Peter Sommerlad, Command Processor, in Pattern Languages of Program Design 2,
Addison-Wesley 1996

[3] Xerox PARC, AOP homepage at http://www.parc.xerox.com/csl/projects/aop

[4] Xerox PARC, AspectJ homepage at http://aspectj.org

[5] voelterSOFTWARE, ThoughtPad homepage at http://www.voelter.de/thoughtpad

http://www.parc.xerox.com/csl/projects/aop
http://aspectj.org/
http://www.voelter.de/thoughtpad

	Intent
	Problem and Motivation
	Applicability
	Solution
	Outline
	Structure
	Participants

	Interactions
	Consequences
	Examples and sample code
	Another solution – and why it does not work
	Variants and improvements
	Related patterns
	Other related work
	Knows uses
	Acknowledgements
	References

