Patterns for Object Transport

Klaus Marquardt

Käthe-Kollwitz-Weg 14, D-23558 Lübeck, Germany

Email: marquardt@acm.org

Copyright © by Klaus Marquardt

Abstract

In distributed systems, objects can be transported and addressed via network connections. Object transport patterns help to cross the mismatch between objects and a flat transport presentation, and support incremental development.

Peripheral Protocol Definition describes how to define the protocol per class and to allow extending the distributed application during development. Protocol Backbone is an anti-pole to this, resolving similar forces to a different solution. Several design patterns help with the implementation. Transparent Remote Access describes technical details how messages are initiated and received, and Synchronizer describes how consistent object state is maintained in different devices.

Introduction

Most complex system are faced with the necessity to transport data between different nodes or devices. The transport is done by networks or simple peer to peer connections (e.g. serial interfaces) where several layers [ISO/OSI] are defined and implemented.

Each application needs to define which kind of data it would like to transport, and which action the transported information should initiate. In object oriented applications, this data and action are described together. The challenge is to match application objects with network messages.

The two major approaches are introduced by Peripheral Protocol Definition and Protocol Backbone. These two solve the same problem with a different weight between forces. The feasible compromises between them are briefly reflected.

Peripheral Protocol Definition is typically implemented using a number of design patterns. Two of them are described in this paper: Transparent Remote Access and Synchronizer. Transparent Remote Access is based on other design patterns like Proxy and Forwarder-Receiver. Synchronizer has a broader context and can be used in much different environments.

The central triangle consists of Peripheral Protocol Definition, Serializer [Riehle+96], and Transparent Remote Access. Together they guide crossing the mismatch between objects and flat transport messages in a similar manner as OO-DBMS cross the gap between objects and flat storage.

Example

The fictional LabPlug system integrates multiple laboratory devices on local workstations. Different local workstations exchange data with a host system. The system consists of computers on three different levels:

· The laboratory devices (analyzers, probe transporters, etc). They run real time operation systems and may contain different processors themselves.

· The local workstation. It runs a PC operating system and connects to multiple networks and interfaces to control a number of laboratory devices.

· A laboratory host. The Laboratory Information Systems (LIS) host collects data from all local workstation, and links the laboratory to a company or hospital information system (HIS).

The current project develops a few laboratory devices (A-Box and B-Box), the local workstation (LabPlug) and the laboratory host (LabHost). It connects to several already available lab devices (C-Box through G-Box), and to a HIS.

Marketing goal: (should I explore?)

Pattern 1: Peripheral Protocol Definition

Growing Protocol, Successive Protocol Definition

An object oriented system that is distributed among different processors (or processes).

The distribution mechanism can be anticipated or is already defined (like “channel based communication between processors, networks layers 1-4 available”, namely TCP/IP) than the key application objects

Changing requirements, or uncertainty about application domain. The exact kind and amount of transport is not known.

A large development team that is capable of dealing with different aspects at the same time.

Data needs to be updated consistently on different processors. Services that are running on a different processor need to be accessible.

Only flat messages can be transported. Objects need to be transmitted or be accessible across this message presentation.

· System evolves, is not completely describable at project start.

· Independent development of different aspects of the application and its technical infrastructure.

· The limitations of the distribution must not hinder the discovery and late changes to application domain objects.

· Late redefinitions of transported data and its presentation must be possible.

· Maintenance: Single entry point for changes.

· Open/closed principle (does that one imply further forces?).

Define the application first. Let the protocol follow. Define the protocol for each application class separately, and maintain it in the application implementation only.

Each application class that is needed in different system devices is derived from Serializer [Riehle+97] or a simplified variant of it. Transport messages consist of one or multiple serialized objects, and are send to a receiving object defined with Transparent Remote Access. For data synchronisation, some remote objects serve as Synchronizer.

· Additional objects can be developed and added after parts of the application are ready (and possibly shipped)

· Solution based on well known ingredients, like Serializer.

· Avoids misunderstandings or misinterpretation of objects or responsibilities.

· Part of the application logics can be executed on client side.

· Classes are testable in isolation.

· Point of execution, location of server is transparent to clients.

· Simple demonstration of milestones. Early visibility of progress.

· Software can evolve without depending on HW or other systems.

· No deep domain knowledge required at project start.

· Different aspects (domain, persistence, communication, user interface) can have different development speeds.

· Problems are solved independent of each other.

· Application drives project.

· Risk reduction: Development takes only steps that are known to be working.

· Kind of coupling. System is build around shared application code, instead of a predefined backbone protocol.

· Versioning requires a strong set of rules and restrictions.

· No instance can decipher all messages.

· In most implementations, no instance can decipher a complete message. Each object knows only a part of it, and knows the “next” object responsible for interpreting the next part.

· Except when meta-information is available, a network monitor can not be build instantly as no complete protocol definition is centrally available. (Can only be build when system is ready.)

· Whole systems of independent processors are hard to develop. A known protocol could be a strong back bone for development.

· Protocol can not be easily published.

· Distributed teams are hard to manage. The common approach of assigning a processor to a team does not work.

· Real time issues are not explicitly covered.

· Performance tuning can not take place on this layer due to the lack of a central instance.

Things to care for:

Issues of Serializer. (Better name here: Serializable) Write/read on identical class (transport message).

Shallow versus deep copy. Arguments in remote calls are deep. The called object (-> TRA) is shallow – an instance on server side already exists (this requires a mechanism / policy for creating identical object hierarchies). Relations to Serializables (arguments) may also be there on both sides.

Presentation of data. A stream format is easy to write and read. Additionally, human debuggers have a change of understanding. Item order important.

A binary format requires least bandwidth, and is also easy to create with Serializer. On the dark side, it is not interpreatable outside of the intended receiver. Item order important.

XML based format has same advantages as stream, but allows for easy interpretation even outside of initial project. It is verbose though. Item order arbitrary, version conflicts less sharp.

Performance tuning. Should not be done on this layer, but preferably in a lower layer. Measures to reduce the required bandwidth include Multi object messages and compressed binary format

Timing aspects are only covered implicitly.

Little vs. big endian. This is an issue in embedded environments. On Tcp/IP, use the network byte order (big). Otherwise, decide for one and stick with it for all messages.

Meta information. Either meta-info is send with the protocol (structure and links), or the structure must exist on both communicating sides, and react consistently on updates.

ID mechanisms. Each message needs a unique identification to reach its receiver (with the license to decipher). See Transparent Remote Access.

Versioning aspects. Here: can easily grow, but hardly be modified (after product shipping). Recommended: Ignore unknown messages. Recommended: reserve ID range for future use (similar to reflection “manufacturer records”)

Growing application versus protocol first. Distributed responsibility equals encapsulation and self-sufficient classes.

One growing project, no distributed team. Order / timing of tasks is critical, the “application implementation”, defining the objects that are really transported, is on the critical path.

Peripheral Protocol Definition supports an XP like development style: fearless changes, corrections as soon as need identified.

Culture: Inexperienced OO developers may feel insecure with this one.

Distributed teams organized per processor - you may be able to change this.

Public protocol - may be a project boundary.

Prefer ProtocolBackBone in these cases.

Ports on TCP/IP inherently presume and support PPD, though on a different level (of OSI/ISO). Messages for different ports do not interfere or assume possible interpretation.

Corba’s IDL. Versions: Each changed class is treated as new (-> Clemens?)

DCOM. Versions: Each class and function is versioned and can only be called with reference to a version. Former versions must remain available (by convention?).

Traffic System [Booch94, chapter 12.2]

Example
LabPlug, A-Box and B-Box, and the LabHost may share code, and define their own protocol. One of the shared classes is LogEntry, and the LogBook. Of the LogBook, only LabPlug and LabHost have implementations. The X-Boxes forwards their entries directly to the LabPlug implementation.

class LogEntry : public Serializable {

 public:

 LogEntry(int severity, int sourceId, const string& text);

 int severity() const;

 int sourceId() const;

 string text() const;

// inherited:

 virtual readFrom(Message&);

 virtual writeTo(Message&);

};

class LogBook {

 public:

 virtual addEntry(const LogEntry&) = 0;

};

Serializer. Transparent Remote Access.

Protocol Backbone. Either one may seem natural but is not. Compromises are possible depending on the projects conditions.

Pattern 2: Protocol Backbone

Central Protocol Definition

Distributed system, with processors / processes (that are developed by different teams). Channel based communication, layers 1-5 available. OO system, Objects to be exchanged. System or application is known to be distributed, and the distribution mechanism (can better be anticipated) than the key application objects. A large team that is capable of dealing with different aspects at the same time. Changing requirements, or uncertain about application domain.

Data needs to be updated consistently on different processors. Services that are running on a different processor need to be accessible.

Only flat messages can be transported. Objects need to be transmitted or be accessible across this message presentation.

· System evolves, is not completely describable at project start.

· Software development is coupled to hardware development.

· Protocol is to be published for future devices, or already published.

· Maintenance: Single entry point for changes.

· Open/closed principle (does that one imply forces?).

Define the protocol first. Let the application follow.
The protocol is the backbone of the application. All messages between all processors are predefined. Each processor in development must conform to it.

· Protocol can easily be published and referenced.

· Devices can be addressed without knowing implementation details like code or libraries.

· Solution based on well known ingredients

· Any external can interpret messages. Semantic network monitors are possible.

· Test possible against a black box reference. Test devices can be created in advance of the product. Manufacturing department can test.

· Different devices could be developed in parallel with minimal coupling.

· Kind of coupling. System is build around a predefined backbone protocol instead of shared application code.

· Versioning requires a strong set of rules and restrictions.

· Integration is “big bang”.

· No late additions possible.

· Requires a deep understanding of the domain.

· Objects follow record contents

· Protocol can not be easily published.

· SW evolution is bound to HW devices and network connections

· Risk: Protocol can not be proved to be correct, prove somes only after integration of the whole system.

· Defining such a protocol is tedious, especially among large or distributed teams.

· Be honest: The first version of a protocol does not work.

· Mistakes can hardly be corrected after shipping.

Things to care for: similar to PPD.

With “Protocol Backbone” some “Manufacturer specific records” are common.

Danger: Such a protocol definition might try to anticipate too much future, or try to solve any thinkable problem. Key is the initial fear that the definition may not hold for future requirements, and that the protocol cannot be changed afterwards. Both extremes will slow the project down, and will create higher costs.

Growing application versus protocol first. Centralised responsibility equals known communications, protocols, and tasks.

Useful when the hardware is also under development, and you want to keep HW and SW development for one processor within one team, while other processors are developed by another team.

Culture: Ambitious OO developers may become frustrated with this one. Developers used to both HW and SW will appreciate it.

(almost all are custom)

Telecommunications.

Hitachi 747/911 analyzer family.

Example
Transmission of a logbook entry from C-Box through G-Box is already defined as:

Struct logEntry {

 int msgId = 173;

 int severity;

 int sourceId;

 char*[40] text;

};

Peripheral Protocol Definition is more common in Client/Server systems.

Reflection:
Protocol Definitions in “Real Projects”

Life consists of compromises. The art of compromise also applies with Peripheral Protocol Definition versus Protocol Backbone. Any project shipping products that have a long life far beyond the projects end, probably in contexts that were unthinkable during the projects definition or development, would like to gain all advantages: Development free of restrictions and fast growing; products stable and reusable by printed manual.

While the project is under way, technical forces demand Peripheral Protocol Definition. When the products are shipped, every customer demands for Protocol Backbone. One possible compromise is a transition of view.

Development starts with Peripheral Protocol Definition. When the application is known and ready to ship, the developed protocol is collected and published. From this time it serves as a Protocol Backbone for future development.

· Advantages of Peripheral Protocol Definition at project start.

· Protocol can be published afterwards.

· Future development is bound to published Backbone.

· Published parts can not be changed, in order to avoid versioning problems.

When the once defined Protocol Backbone is considered too restrictive, and expansions (not changes!!) are expected, some fields in transport messages are marked for future use, or complete records are reserved for future products. Known uses: ASTM

Can not really reach Peripheral Protocol Definition, but new products have a reserved space (ID room) where they can apply Peripheral Protocol Definition. Later, you could (again) apply Transition of View.

· Protocol can be published.

· Further development can apply Peripheral Protocol Definition on protocol additions.

· Early Backbone enforces conventions that may be hard to keep.

· Extensions from different follow-on products may interfere unnoticed, even though a “backbone” was in place.

Versioning issues can be resolved with a protocol that can be interpreted by instances that were not developed in the initial project. Here even part information can be transmitted. Clue: send the data together with a semantic description what the data means (meta data). Known use: XML

· Advantages of Peripheral Protocol Definition at project start.

· Protocol can be published.

· Protocol interpretation possible for any receiver.

· Protocol is rather verbose.

· Simple readFrom / writeTo pair is replaced by an interpreter. More development and run time effort.

Pattern 3: Transparent Remote Access

 Peripheral Protocol Definition.

Each message (whether object or not) needs a sender and a receiver. These are classes?

· Transport transparent

· Separated responsibilities between classes; cookbook for implementation or even generation

Address only remote objects. Use Proxies to convert the call into a transport message; use forward-receiver to send this message to the real implementation.

· Clear dependency structure

· Clear responsibilities per object

· Further active objects can be added anytime

· Some overhead needed to make it seamless

For the basic functionality, three steps are needed. For extended functionality, further steps can be taken.

First step: Define the object that you need to make available independent of the processor or process. Separate the interface by making it an abstract class (protocol class a la Lakos: no members), and let the implementation derive from it. Take care that all functions do not return any values or references, and take as parameters only fundamental or serializable types. All clients access the interface class.

Result: two classes specific to the remotely addressable object: an interface and a derived implementation.

Second step: For the client side, derive a Proxy class that implements each call by creating a network message and forwarding it (via Forwarder-Receiver) to the server side. For the server side, create a specific receiver class that unpacks the message back into function arguments, and calls the implementation class.

To make this step work, you need to define two ID’s. The first identifies the addressed remote object, and the Proxy and its equivalent Receiver have to agree on it. This ID needs top be unique for each remotely accessible object. The second ID is internal to the object and identifies the called function. On the server side, you need to register all Receivers by their respective IDs to forward the network message from the network listener to the correct Receiver.

Precondition: a Forwarder-Receiver functionality, or a Channel interface.

Result: a class utility ReceiverRegistry and a base class Receiver – both not specific to the remote object. One specific Proxy class derived from the interface, one specific Receiver class that addresses the interface. One or two header files defining the ID’s.

Third step: Create a factory for the client side that creates the Proxy and returns an Interface. On the server side, make sure that an instance of both the Receiver and the Implementation is created, registered, and that the Receiver has access to the Implementation (e.g. via a Factory).

Result: You can now call functions at an object that may be anywhere in the system, with the only precondition that you have a transport channel available.

To make the service more attractive, you can opt to add further steps:

Forth step: To receive return values from such a server object, define a second remotely addressable object. This time the client – server sides are exchanged. The initial server object answers to a distinct object, that is represented here as a Proxy to a “Server Answer” object whose implementation resides on the clients side.

Result: You have a triangle of classes. The client processor gets an answer, but to a different instance than you originally addressed.

Fifth step: You can combine both interfaces to a single one, that resides on the clients side, maintains instances of the “Question Proxy” and the “Answer Implementation”, and keeps track of copying data and references, and the timing constraints. You need to define a thread or task context for this responsibility (except you can afford to exclusively wait).

Result: You just re-implemented a part of CORBA, without a broker though. Admittedly, CORBA’s IDL is a lot handier, and much less effort. This implementation makes most sense when you can afford not to go down to step five, and have no CORBA implementation available in your system.

Deep versus shallow copy. Arguments in remote calls are deep. The called object is shallow – an instance on server side already exists (this requires a mechanism / policy for creating identical object hierarchies). Relations to Serializables (arguments) may also be there on both sides.

Example
At A-Box the Proxy looks like this:

class LogBookProxy : public Proxy {

 public:

 LogBookProxy(Channel& aChannel) : Proxy(aChannel) {};

 addEntry(const LogEntry& anEntry) {

 m_message.reset();

 m_message.setId(LOG_BOOK, ADD_ENTRY);

 m_message << anEntry;

// Serializable provides shift operators

 send(m_message);

 }

};

At LabPlug, a specific receiver is implemented and registered.

class LogBookReceiver : public Receiver {

 public:

 LogBookReceiver(LogBook& theImpl) : Receiver(LOG_BOOK), m_impl(theImpl)

 {}; // Receiver base class cares for registration

 onReceive(Message& msg);
// dispatches to function

 private:

 LogBook& m_impl;

// reference to the implementation

 addEntry(Message& msg) {

 LogEntry myEntry;

 myEntry << msg;

 m_impl.addEntry(myEntry);

 };

};

Corba.

Robert Martin gives a textbook example of the most important aspects [Martin96]

PPD. Proxy. Forwarder-Receiver.

Pattern 4: Synchronizer

A note to the shepherd: This surely has been published before (IMO it is not covered by Observer or Publisher-Subscriber). That is why it is very sketchy.

Distributed system consisting of different devices. Peripheral Protocol Definition and Transparent Remote Access.

Respectively:

Converting objects between a representation taken from a class library or framework, and own (possibly derived) classes.

Data must be kept current on different processors.

· Responsibility outside of synchronized data / objects

Create a distinct object responsible for synchronizing the objects / data on the different processors.

Respectively:

Create a distinct object to convert between both worlds. (In some environments, a own derived class can do the conversion itself, e.g. C++: through a constructor and a cast operator.)

· Clear dependency structure.

· Clear responsibilities per object.

· Single point for changes and performance tuning.

· More classes, again.

Resist the temptation to allow your objects to be synchronized, to take the synchronization responsibility themselves. That would lead to numerous asynchronous events and effectively consume all available bandwidth especially for small amounts of data.

Synchronizers in distributed environments are build on top of Transparent Remote Access. The data source uses a push model. All consumers must previously have registered themselves, and provided a Proxy on the source side. This Observer-Proxy forwards the pushed (to by synchronized) objects to all remote consumers.

At first it may irritate that the remote clients look like servers – they receive the data in a function call as if they would do a service. But this is the “answer” way, where the server gives back the data.

Consumers are not exactly clients. In a client/server view, the client would ask for each object. Here it is more like an abonnement.

Preipheral Protocol Definition. Transparent Remote Access. Proxy. Observer.

Conclusion

The patterns form a recipe to create distributed applications in heterogeneous environments. Especially where ready to use products like CORBA or DCOM are not available, like embedded systems, developers can create their own powerful mechanism for distributed object transport and remote access.

The patterns do not fully exploit all aspects that remote server processes would require. You may have noticed the missing answer to a service request. These gaps can be filled by combining the existing patterns. Unfortunately it still requires manual creation of further classes, unlike existing mechanisms as IDL that would automize this work.

Acknowledgements

I would like to thank my colleague Lars Pickert for thoughtful comments. … (shepherd).

References

Booch94
Booch: Object Oriented Analysis And Design. With Applications. Second Edition, Addison-Wesley 1994

Buschmann+96
Pattern-Oriented Software Architecture. A System of Patterns, Wiley 1996
Gamma+94
Gamma, Helm, Johnson, Vlissides: Design Patterns, Addison-Wesley 1994

Martin96
Martin: Designing Object Oriented Applications Using the Booch Method, Prentice Hall 1996

Riehle+98
Riehle, Siberski, Bäumer, Megert, Züllighoven: Serializer. In: Pattern Language of Program Design, Volume 3, 1998, chapter 17

Context

Problem

Forces

Solution

Consequences

Implementation

Organizational Issues

Known Uses

Related Patterns

Context

Problem

Forces

Solution

Consequences

Implementation

Known Uses

Related Patterns

Extensions

Counterindication

Already Known

Related Patterns

Known Uses

Implementation

Consequences

Solution

Forces

Problem

Context

Interpretable Protocol

Manufacturer Records

Transition of View

Related Patterns

Known Uses

Organizational Issues

Implementation

Consequences

Solution

Forces

Problem

Context

Also Known As

Also Known As

�SEITE \# "'Seite: '#'�'" ��What have we gained? What is still missing? What does related work provide? Where do we go from here?

Patterns for Object Transport
Version 3.3.00
page 12
Patterns for Object Transport
Version 3.3.00
page 12

