
1.

ven if
their

e leg-
s Esprit
rame-

everse
the

nt how
ollow

d dur-

t no.
PRIT
ork-

atth-
T ie Code And Quest ions:
a Reengineering Pattern

Stéphane Ducasse and Oscar Nierstrasz

SCG-IAM, University of Bern

{ducasse,oscar}@iam.unibe.ch

Abstract. The reengineering pattern presented in this paper shows how you can
support your understanding during system reengineering by linking your questions
or information about the code in the code itself.

1. Introduction

Legacy systems are not limited to the procedural paradigm and languages like Cobol. E
object-oriented paradigm promised the building of more flexiblesystems and the ease in
evolution, nowadays object-oriented legacy systems exist in C++, Smalltalk or Java. Thes
acy systems need to be reengineered to meet new requirements. The goal of the Famoo
project was to support the evolution of such a object-oriented legacy systems towards f
works [Duca99].

In this context, we used patterns as a way to record reengineering expertise. We wrote r
engineering patterns that record how to extract information of the legacy systems from
code, the organization or the people [Deme99] and reengineering patterns that prese
code can be transformed to support new requirements, to be more flexible or to simply f
object-oriented design [Duca99a].Tie Code and Questions is a third kind of reengineering
pattern, it is not only applicabel during the reverse engineering phase but can also be use
ing the reengineering of a software system.

Acknowledgements.This work has been funded by the Swiss Government under Projec
NFS-2000-46947.96 and BBW-96.0015 as well as by the European Union under the ES
program Project no. 21975. We would like to thanks the attendees of the SCG internal w
shop writer at the Universitu of Bern: Serge Demeyer, Pietro Malorgio, Tamar Richner,M
ias Rieger and Sander Tichelaar.

2. Tie Code and Questions

code

ou

plied
Code.
as you
ques-

e in-
ily.

ish in
e the

re

to as
u to
e a

eth-
Tie Code and Questions
Intent —Link your questions or information about the code you are reengineering in the
itself to keep track of them and keep them synchronized with the code they refer to.

Problem

You want tokeep track of your understandingabout a piece of code and the questions that y
have, keep theseremarks synchronized with the codeduring its future evolution andshare them
with the other members of your team.

You are reverse engineering the precise functionality of an application. You may have ap
Refactor to Understand and started to refactor the code when you identified Duplicated
You may also have used Step Through The Code to understand a functionality. However,
did not develop the original code, a lot of assumptions are not clear for you and raise some
tions about the reason of certain sequences of actions or about design.

Context

You need to have access to the code.

Solution

While you are working on the code annotate it directly with the questions you are facing.

General Hints.

• Use conventions to identify your annotations. In a team context, include for exampl
itials of the developer that made the comments. This way you can query them eas

• Never use a language different that the one of the programming language (engl
most cases) in the annotations. Otherwise, you create a different context and forc
future reader to switch between them.

• When you know the answer of one ofyour questions add it near the questions for futu
readers.

Comment Based.

• Record your annotations by using the programming language comment (referred
comment-based annotations). Programming environments like Eiffel’s allow yo
specify different level of visibility for your comments and code; in such as case giv
private scope to the comments so that clients cannot see your annotations.

. • If you are working with an IDE where you can query method senders use specific m
ods dedicated to the annotations (referred to as method-based annotations).

Tie Code and Questions 3.

s func-
grated
en-

s the
based

u

u can
envi-
ation.
g on,
sing a

s with
same
rom

lasses
may

od is
oose

meth-

ations
ntainer
Discussion
The comment-based approach is better-suited for a text-based environment like the e-tag
tionality with emacs [etags man]. The method based-approach is better suited for an inte
environment like the one of Smalltalk or Sniff+ that supports the query of method implem
tors or senders. In that case, the annotations can be queried like any other method send.

The less you change the code, the less likely it is that you introduce errors. This make
comment based version safer than the method-based version. However using a method
approach allows you by extending the query functionality to easily produce a log file.

Keeping vs Removing the Annotations. What are the options that you have when yo
want to release a new version?

• Comment-based annotations. If your client does not have to see the code, then yo
let the comment-based annotations in the code. The Eiffel programming language
ronment provides several views of the code that are useful especially in such a situ

• Method based annotations. If performance is an issue for the system you are workin
choose the comment-based approach or convert into comments the method calls u
perl script or similar tools.

However, in both cases you should always consider that if somebody got some problem
a piece of code and found the solution, it is likely that another developer will encouter the
problem. So when you will remove the annotations you will remove valuable information f
your ystem.

Example
You can define a new method dedicated to the annotation in the common ancestor of the c
which you trying to understand. If your application does not share a common ancestor you
duplicate the method definition. You may also create a specific class to which the meth
sent. The following Smalltalk code defines in the class MSEAbstractRoot (root of the M
environment) the method strangeCode: that takes a string as argument. As per default this
ods does nothing, its body is empty.

MSEAbstractRoot>>strangeCode: aString
"empty method body"

Then some annotations are included in some methods like the followingone. The annot
do not replace the methods comments but contain some specific questions that the mai
asked himself while trying to understand the system.

assessClassAttributesFor: aClassDef smalltalkClass: aSTClass
"Try to find out the properties of the given class (i.e., category,

sourceAnchor, declaredAbstract, ...)"

| category |
(self saveComments and: [aSmalltalkClass comment isEmpty not])

ifTrue: [aClassDef addComment: aSmalltalkClass comment].
category := self assessClassCategoryFor: aSmalltalkClass

isMetaClass: isMetaClass.

4. Tie Code and Questions

-
will

ntion
k97a].

lack-
way
o dis-
tions.

ly in-
will

s them-
keep

te the
ocu-
de.

act,
mod-
e.

nd
raised
self saveSourceReference
ifTrue:

[aClassDef
sourceAnchor: (MSEUtilities

browserCategoryToSourceAnchor: category)].
self strangeCode: 'SD:3/12/99.Why is metaclass is checked to store

category?'.
self saveCategory & isMetaClass not

ifTrue: [aClassDef setNamedPropertyAt: #category put:
category].
aClassDef isAbstractKnown

ifTrue: [aClassDef isAbstract: false]

Tradeoffs

Finding the Right Amount of Annotation. You should take care about the amount of in
formation that you will introduce in the code. Too much annotations or too verbose ones
distract the reader from the code itself. Normally the code should communicate its inte
and the methods or class comments are there to specify implementation details [Bec
That’s why the annotations should contain specific and precise remarks.

To see the advantages of applyingTie Code and Questions, let’s compare it with the alter-
native solution of writing your questions and information into a separate log file or use a b
board system like a Wiki Web Server [http://c2.com/] to share them with your team. This
you could have a list of questions to ask to the original developers of the application and t
cuss with the other members of your team. You would have a document with all your ques
However,Tie Code and Questions has the following advantages:

Minimise Context Description. While not applyingTie Code and Questions, you will
have to spend an extra effort to describe the context of your annotations.You will certain
clude some method bodies and this will be redundant with the code itself. Moreover, you
spend time for documenting volatile information. By applyingTie Code and Questions, you
will use as much as possible the context given by the language semantics and the classe
selves. This way you will minimize the need of describe the context of your questions and
your effort low while documenting your questions and annotations.

Automatic Synchronization. While not applyingTie Code and Questions, you will
have to really take care to keep the code and the questions in sync. You will have to upda
log file each time the related code changes. Moreover, as your log will be not an official d
mentation it will be even more difficult to allocate time to keep it synchronized with the co
By applyingTie Code and Questions, as the code and their annotations are in close cont
you are improving your ability to keep the comments and the code changes in sync. While
ifying the code, you will modify the annotations and remove them it they become obsolet

Benefits of Locality. Having your annotations in a log file does not modify the code a
does not introduce additional errors. However, every time you pass over the code that

Tie Code and Questions 5.

l have
s and
is not
e
ar and
text.

ur
every
er/his

s the
ximity

but to
of the
by in-

rn has
m used

were
n-

niX.
thod
de-

infor-
Post-
e field

he sys-
anding
some questions, these questions will not be directly present at the code level, so you wil
to link the log and the code manually. Moreover, you will perhaps not have all the question
annotations you asked yourself in mind and reading all your notes before starting to work
possible. By applyingTie Code and Questions, the annotations are kept in the code at th
place where the questions arose, you will read them at the exact place where they appe
only while you are reading this particular code. They will represent your reengineering con

Improving Team Communication. A log file can be shared with other members of yo
team. However, you must keep control of the versions of the code to which it is related and
team member should pay attention that he is reading the right log corresponding with h
version of the application. By applyingTie Code and Questions, team members will always
read the annotations in sync with their versions and the code they are working on.

Rationale

This pattern has its roots in literate programming [Reen89a]. Literate programming put
emphasis on keeping the code and its documentation physically close. The physical pro
reduces the effort spent in keeping the code and its documentation in sync.

Known Uses
• The Squeak development team used this technique not to keep track of questions

communicate between developers. This way every developer had an understanding
status of strange aspects of the code. In this team the comments were introduced
voking methodflag: defined in the classObject .

• During the development and the maintenance of the Moose environment, the patte
been applied to register questions about the strange aspects of the system. The tea
the methodscodeToBeChanged: andstrangeCode: implemented into the application
root class to annotate with two different meanings.

• During the development of the game Skweek in assembler possible improvements
tagged using dummy labels namedgorbi . Hence the editor and the debugger could ide
tify them easily.

• A slightly different but related use of the pattern is applied by the company MediaGe
A systematic code tagging mechanism was introduced. The idea is to include in me
comments information identifying the motivation of the code changes (bug fixes, new
velopment, new release), the name of developer, the time of the actions. From this
mation the dependencies between the applications were extracted [OOPSLA 98
er].To increase the acceptance of the tagging procedure with the developers, a fre
was added to the tag where the developers could write what they want.

Resulting Context

You are registering the questions or the aspects of the system you are maintaining inside t
tem thus reducing the effort spent to keep the code and your questions or early underst
of the application in sync.

6. Tie Code and Questions

nguage
Lan-

hane
iversi-

g Pat-
Pat-

all-
References
• [Beck97] Kent Beck,Smalltalk Best Practice Patterns,Prentice-Hall, ISBN: 0-13-476904-

X, 225 pages,1997
• [Deme99] Serge Demeyer, Stéphane Ducasse and Sander Tichelaar, A Pattern La

for Reverse Engineering, Proceedings of the 4th European Conference on Pattern
guages of Programming and Computing, 1999.

• [Duca99] The FAMOOS Object-Oriented Reengineering Handbook, Editors, Stép
Ducasse and Serge Demeyer,See http://www.iam.unibe.ch/˜famoos/handbook, Un
ty of Berne, 1999

• [Duca99a] Stéphane Ducasse, Robb Nebbe and Tamar Richner,Two Reengineerin
terns: Eliminating Type Checking, Proceedings of the 4th European Conference on
tern Languages

• [Reen89] Trygve Reenskaug and Anna Lise Skaar, An Environment for Literate Sm
talk Programming, Proceedings OOPSLA ’89, 337-346,1989.

	Tie Code And Questions: a Reengineering Pattern
	1. Introduction
	Problem
	Context
	Solution
	Discussion
	Example
	Tradeoffs
	Rationale
	Known Uses
	Resulting Context
	References

