
1.

A Pattern Language for
Reverse Engineering

v0.4-- March 3, 2000 4:30 pm

http://win-www.uia.ac.be/u/sdemey/Pubs/Deme00n/

Serge Demeyer(*), Stéphane Ducasse(+), Oscar Nierstrasz(+)

(*) University of Antwerp - LORE - http://win-www.uia.ac.be/u/sdemey/
(+) University of Berne - SCG - http://www.iam.unibe.ch/~scg/

Abstract. Since object-oriented programming is usually associated with iterative develop-
ment, reverse engineering must be considered an essential facet of the object-oriented paradigm.
The reverse engineering pattern language presented here summarises the reverse engineering ex-
perience gathered as part of the FAMOOS project, a project with the explicit goal of investigating
reverse and reengineering techniques in an object-oriented context. Due to limitations on Euro-
PLOP submissions, only part of the full pattern language is presented, namely the patterns describ-
ing how to gain an initial understanding of a software system and one pattern preparing subsequent
reengineering.

This work has been funded by the Swiss Government under Project no. NFS-2000-46947.96 and
BBW-96.0015 as well as by the European Union under the ESPRIT program Project no. 21975
(FAMOOS).

Reverse Engineering Patterns 2.

Chapter 1

Reverse Engineering Patterns
1. Introduction
This pattern language describes how to reverse engineer an object-oriented software system.
Reverse engineering might seem a bit strange in the context of object-oriented development, as
this term is usually associated with "legacy" systems written in languages like COBOL and
Fortran. Yet, reverse engineering is very relevant in the context of object-oriented development
as well, because the only way to achieve a good object-oriented design is recognized to be iter-
ative development (see [Booc94a], [Gold95a], [Jaco97a], [Reen96a]). Iterative development
involves refactoring existing designs and consequently, reverse engineering is an essential fac-
et of any object-oriented development process.

The patterns have been developed and applied during the FAMOOS project (http://
www.iam.unibe.ch/~famoos/); a project which goal is to produce a set of re-engineering tech-
niques and tools to support the development of object-oriented frameworks. Many if not all of
the patterns have been applied on software systems provided by the industrial partners in the
project (i.e., Nokia and Daimler-Chrysler). These systems ranged from 50.000 lines of C++ up
until 2,5 million lines of Ada. Where appropriate, we refer to other known uses we were aware
of while writing.

We welcome any feedback that would help us do that. We are especially interested in coarse
grained comments ---does the structure work? is the set of risks complete? is the naming OK?-
-- rather than detailed comments on punctuation, spelling and layout.

Acknowledgments. We would like to thank our EuroPLoP’99 shepherd Kyle Brown: his
comments were so good we considered including him as a co-author. We also want to thank
both Kent Beck and Charles Weir who shepherded a very rough draft of what you hold right
now. Of course there is also Tim Cox, our contact person with the publisher: thanks for your pa-
tience --- we hope we will not disappoint you. Next, we thank all participants of the FAMOOS
project for providing such a fruitful working context. And finally, we thank our colleagues in
Berne, both in and outside the FAMOOS team: by workshopping earlier versions of this pattern
language you have greatly improved this manuscript.

2. Clusters of Patterns
The pattern language has been divided into clusters where each cluster groups a number of pat-
terns addressing a similar reverse engineering situation. The clusters correspond roughly to the
different phases one encounters when reverse engineering a large software system. Below is a
short description for each of the clusters, while figure 1 provides a road map.

• First Contact. This cluster groups patterns telling you what to do when you have your
very first contact with a software system.

3.

• Initial Understanding. Here, the patterns tell you how to obtain an initial understanding
of a software system, often documented in the form of class models.

• Detailed Model Capture. The patterns in this cluster describe how to get a detailed
understanding of a particular component in your software system.

• Prepare Reengineering. Since reverse engineering often goes together with reengi-
neering, this cluster includes some patterns that help you prepare subsequent reengineer-
ing steps.

3. Risk Factors

Reverse engineering projects include a lot of uncertainty, and to control these uncertainties
some form of risk management is necessary. Consequently, with each phase of the reverse en-
gineering process, you should identify potential risks of project delays and take appropriate ac-
tions to reduce these risks[Boeh89a].

To evaluate the applicability of a pattern from a risk management perspective, we introduce a
number of risk factors. We present these risk factors at the beginning of each cluster to describe
the most important threats that may jeopardize your reverse engineering project. We also use
these risk factors as a way to compare all patterns by showing how each pattern reduces the cor-
responding risk factor (see Table 1).

• Limited Resources. Because your resources are limited you must be selective in which
parts of the system to reverse engineer. However, if you select the wrong parts, you will
have wasted some of your precious resources. Therefore, in general the less resources
you need to apply, the smaller the risk.

Figure 1 Overview of the pattern language using clusters.

Resources spent

Sy
st

em
 U

nd
er

st
an

in
g

First Contact
Interview During Demo
Read all the Code in One Hour
Skim the Documentation

Initial Understanding
Speculate about Domain Objects
Reconstruct the Persistent Data
Identify the Largest
Recover Completed Refactorings

Detailed Model Capture
Derive Public Interface
Step Through the Execution

Prepare Reengineering
Refactor To Understand

Reverse Engineering Patterns 4.

• Techniques and Tools. For reverse engineering large scale systems, you need to apply
techniques probably accompanied with tools. However, techniques and tools shape your
thoughts and good reverse engineering, requires an unbiased opinion. Also, techniques
and tools do require resources which you might not be willing to spend. In general, the
less techniques and tools required, the smaller the risk.

• Reliable Information. A reverse engineer is much like a detective that solves a mystery
from the scarce clues that are available [Will96b]. As with all good detective stories, the
different clues and testimonies contradict each other, thus your challenge is to assess
which information is reliable and solve the mystery by coming up with the most plausible
scenario. In general, the more reliable the information you get, the smaller the risk.

• Abstraction. The whole idea of understanding the inner complexities of a software sys-
tem is to construct mental models of portions of it, thus a process of abstraction. For in-

Li
m

ite
d

R

e
so

u
rc

e
s

Te
c

h
n

iq
u

e
s

a
n

d
 T

o
o

ls

R
e

lia
b

le

In
fo

rm
a

tio
n

A
b

st
ra

c
tio

n

Sc
e

p
tic

a
l

C
o

lle
a

g
u

e
s

First Contact

Read all the Code in One Hour ++ ++ + - +

Skim the Documentation ++ ++ - + -

Interview During Demo ++ + / + -

Initial Understanding

Speculate about Domain Objects - - ++ ++ +

Reconstruct the Persistent Data - - ++ + ++

Identify the Largest

Recover Completed Refactorings

Detailed Model Capture

Derive Public Interface

Step Through the Execution

Miscellaneous

Confer with Colleagues

Table 1: How each pattern reduces the risk.
Very good: ++, Good: +, Neutral: /, Rather Bad: -, Very bad: --.

Limited Resources: The less resources you need to apply, the better.
Techniques and Tools: The less techniques and tools required, the better.
Reliable Information: The more reliable the information you get, the better.

Abstraction: The more abstract the information obtained, the better.
Sceptical Colleagues: The more credibility you gain, the better.

5.

stance, the reengineering taxonomy of Chikofsky and Cross [Chik90a], defines reverse
engineering as "the process of analyzing a subject system to [...] create representations
of the system [...] at a higher level of abstraction". Once you are able to strip away por-
tions of a system as being irrelevant for your future needs, you have acquired the neces-
sary understanding to proceed. Moreover, the more details you can confidently strip
away, the higher your understanding and thus the Therefore, the more abstract the infor-
mation obtained, the smaller the risk.

• Sceptical Colleagues. As a reverse engineer, you must deal with three kinds of col-
leagues. The first category are the faithful, the people who believe that reverse engineer-
ing is necessary and who thrust that you are able to do it. The second is the category of
the sceptic, who believe this reverse engineering of yours is just a waste of time and that
its better to start the whole project from scratch. The third category is the category of the
fence sitters, who do not have a strong opinion on whether this reverse engineering will
pay off, so they just wait and see what happens. To save your reverse engineering from
ending up in the waste bag, you must keep convincing the faithful, gain credit with the
fence sitters and be wary of the sceptic. In general, the more credibility you gain, the
smaller the risk.

Table 1 shows an overview of how the different patterns reduce the risks. This view is especial-
ly important because it emphasises the different trade-offs implied by the patterns. For instance,
it shows that Read all the Code in One Hour and Skim the Documentation take about the
same amount of resources and also require about the same amount of techniques and tools (very
little, hence the ++), yet score differently on the reliability and abstraction level of the resulting
information. On the other hand, Speculate about Domain Objects requires more resources,
techniques and tools then the previous two (i.e., -), but achieves better results in terms of reliable
and abstract information.

4. Format of a Reverse Engineering Pattern
All the reverse engineering pattern presented make use of the following format.

• Name. Names the pattern after the solution it proposes. The pattern names are verb
phrases to stress the action implied in applying them.

• Intent. Provides a thumbnail summary of the pattern.

• Problem. Describes the problem the pattern is solving. The section starts with a single
sentence summarizing the heart of the problem addressed by the pattern. The section
continues with a context section, which presents the context in which the pattern is sup-
posed to be applied and which should be read as the prerequisites that should be satisfied
before considering the pattern. The problem may also include a Symptoms sections,
which lists some indications you may use to know when the problem occurs.

• Solution. Proposes a solution to the problem that is applicable in the given context. The
section starts with a few sentences summarizing the process one is following while ap-
plying the pattern. This section may include a Steps or a list of Hints to be taken in ac-
count when applying the solution.

• Tradeoffs. Discusses the issues that should be considered when applying the pattern, e.g.
what is the impact, what makes it difficult and when should it not be applied.

Reverse Engineering Patterns 6.

• Example. Provides a realistic example of when and how to apply the pattern.
• Rationale. Provides a justification of the problem and the solution, plus some technical

discussion of why the solution solves the problem. May also include a discussion on the
Typical Causes of the problem, as a way of reassuring people that the problem in itself
does not necessary come from incompetence.

• Known Uses. Presents the known uses of this pattern. Note that all patterns in this pat-
tern language have been developed and applied in the context of the FAMOOS project.
However, this section also presents other reported uses of the pattern we were aware of
while writing the pattern.

• Related Patterns. Links the pattern in a web of other patterns, explaining how the pat-
terns work together to achieve the global goal of reverse engineering. The section in-
cludes a What Next section which tells you how you may use the output of this pattern
as input for another one.

7.

Chapter 2

First Contact
-- Due to limitations on EuroPLOP submissions, only part of the full pattern

language is presented. Therefore, only the intent sections of the patterns
in this cluster are preserved. We refer the reader the our EuroPLOP99
submission for the full version of these patterns.

Read all the Code in One Hour

Intent
Make an initial evaluation of the condition of a software system by walking through its source
code in a limited amount of time.

Skim the Documentation

Intent
Make an initial guess at the functionality of a software system by reading its documentation in
a limited amount of time.

Interview During Demo

Intent
Obtain an initial feeling for the functionality of a software system by seeing a demo and inter-
viewing the person giving the demo.

Initial Understanding 8.

Chapter 3

Initial Understanding
The patterns in First Contact should have helped you getting some first ideas about the soft-
ware system. Now is the right time to refine those ideas into an initial understanding and to doc-
ument that understanding in order to support further reverse engineering activities. The main
priority in this stage of reverse engineering is to get an accurate understanding without spend-
ing too much time on the hairy details.

The patterns in this cluster tell you how to extract a domain model from source code (Specu-
late about Domain Objects), how to extract a class model from a database (Reconstruct
the Persistent Data), how to identify important chunks of functionality (Identify the Larg-
est), how to recognize which refactorings have been applied in the past (Recover Completed
Refactorings). With this information you will probably want to proceed with Detailed Model
Capture.

Risk Reduction

The list below is sorted according to the impact the risk factor will have on later reverse engi-
neering activities. To reduce the risk we define some generic principles that we emphasised in
the patterns.

• Reliable Information. Since the initial understanding will influence the rest of your
project, accuracy is the single most important aspect. Consequently, take special precau-
tions to make the extracted models as reliable as possible. In particular, plan for an in-
cremental approach, where you will improve your initial understanding during later ac-
tivities.

• Limited Resources. Documenting the initial understanding is crucial as all subsequent
reverse engineering activities will benefit from it. Consequently, consider Initial Under-
standing a very important activity and therefore plan a substantial amount of your re-
sources here. However, via an incremental approach you can stretch your resources in
time, i.e. you will not allocate all your resources early in the project but rather some of
the resources allocated later should improve the understanding (and corresponding mod-
els) acquired early.

• Techniques and Tools. While obtaining an initial understanding, you can afford the
time and money to apply some heavyweight techniques and purchase some expensive
tools. Yet ---because accuracy is so important--- never rely exclusively on techniques
and tools and always make a critical assessment of their output.

• Abstraction. Understanding means building mental models and models are meant to
strip away details. Yet, details are crucial to the overall system [Broo87a]. Consequently,
favor different models where each emphasizes a different perspective and choose the
most appropriate ones when the situation calls for it.

• Sceptical Colleagues. Good models of a software system help a lot because they
greatly improve the communication within a team. However, since they strip away de-

9. Speculate about Domain Objects

tails, you risk to offend those people who spend their time on these details. Also, certain
notations and diagrams may be new to people, and then your diagrams will just be ig-
nored. Consequently, take care in choosing which models to produce and which nota-
tions to use --- they should be helpful to all members of the team.

Speculate about Domain Objects
AKA: Map business objects onto classes

Intent
Progressively refine a domain model against source code, by defining hypotheses about which
objects should be represented in the system and checking these hypotheses against the source
code.

Problem
You do not know how concepts from the problem domain are mapped onto classes in the
source-code.

Context

You are in the early stages of reverse engineering a software system: you have a rough under-
standing of its functionality and you are somewhat familiar with the main structure of its source
code. You have on-line access to the source code of the software system and the necessary tools
to browse it (i.e., from an elementary grep to a full-fledged code browser). You have reasona-
ble expertise with the implementation language(s) being used.

Solution
Use your expertise to develop a hypothetical class model representing the problem domain. Re-
fine that model by inspecting whether the names in the class model occur in the source code and
by adapting the model accordingly. Repeat the process untill you’re class model stabilizes.

Steps
1. With your understanding of the requirements and usage scenarios, develop a class

model that serves as your initial hypothesis of what to expect in the source code. For
the names of the classes, operations and attributes make a guess based on your expe-
rience and potential naming conventions (see Skim the Documentation).

2. Enumerate the names in the class model (that is, names of classes, attributes and op-
erations) and try to find them in the the source code, using whatever tools you have
available. Take care as names inside the source-code do not always match with the
concepts they represent.1 To counter this effect, you may rank the names according to
the likelihood that they appear in the source code.

Initial Understanding 10.

3. Keep track of the names which appear in source code (confirm your hypotheses) and
the names which do not match with identifiers in the source code (contradict your hy-
pothesis). Note that mismatches are positive, as these will trigger the learning process
that you must go through when understanding the system.

4. Adapt the class model based on the mismatches. Such adaptation may involve
(a) renaming, when you discover that the names chosen in the source code do not
match with your hypothesis;
(b) remodelling (@refactoring ?@), when you find out that the source-code representa-
tion of the problem domain concept does not correspond with what you have in your
model. For instance, you may transform an operation into a class, or an attribute into
an operation.
(c) extending, when you detect important elements in the source-code that do not ap-
pear in your class diagram;
(d) seeking alternatives, when you do not find the problem domain concept in the
source-code. This may entail trying synomyms when there are few mismatches but
may also entail defining a completely different class model when there are a lot of mis-
matches.

5. Repeat from step 2 until you obtain a class model that is satisfactory.

Hints

The most difficult step while applying this pattern is the development of an initial hypotheses.
Below are some hints that may help you to come up with a first class model.

• The usage scenarios that you get out of Interview During Demo may serve to define
some use cases that in turn help to find out which objects fulfill which roles. (See
[Jaco92a] for use cases and [Reen96a] for role modeling.)

• Use the noun phrases in the requirements as the initial class names and the verb phrases
as the initial method names, as suggested in responsibility-driven design (See [Wirf90b]
for an in depth treatment.)

Tradeoffs

• Impact. You should plan to keep the class model up to date while your reverse engineer-
ing project progresses and your understanding of the software system grows. Otherwise
your efforts will be wasted. If your team makes use of a version control system, make
sure that the class model is controlled by that system too.

• Requires Implementation Expertise. In itself, the pattern does not require a lot of re-
verse engineering expertise. However, a large repertoire of knowledge about idioms, pat-
terns, algorithms, techniques is necessary to recognize what you see. As such, the pattern
should preferably be applied by experts in the implementation language.

1. In one particular reverse engineering experience, we were facing source code that was a mixture of Eng-
lish and German. As you may expect, this complicates matters a lot.

11. Speculate about Domain Objects

Example

Rationale

If you Speculate about Domain Objects, you go through a learning process which gains a
true understanding. In that sense, the contradictions of your hypotheses are as important as the
confirmations, because mismatches force you to consider alternative solutions and assess the
pros and cons of these.

Moreover, the pattern scales up. This is especially important as for large object-oriented pro-
grams (over a 100 classes) it quickly becomes impractical to apply the inverse process, which
is building a complete class model from source code and afterwards condensing it by removing
the noise. Besides being impractical, such an approach does not bring a lot of understanding,
because you are forced to focus on the irrelevant noise instead of the important concepts.

 Known Uses

In [Murp97a], there is a report of an experiment where a software engineer at Microsoft applied
this pattern (it is called ’the Reflexion Model’ in the paper) to reverse engineer the C-code of Mi-
crosoft Excel. One of the nice sides of the story is that the software engineer was a newcomer
to that part of the system and that his colleagues could not spend too much time to explain him
about it. Yet, after a brief discussion he could come up with an initial hypothesis and then use
the source code to gradually refine his understanding. Note that the paper also includes a de-
scription of a lightweight tool to help specifying the model, the mapping from the model to the
source code and the checking of the code against the model.

Related Patterns

All the patterns in the First Contact cluster are meant to help you in building the initial hypoth-
esis now to be refined via Speculate about Domain Objects. Afterwards, some of the pat-
terns in Detailed Model Capture (in particular, Step Through the Execution) may help you
to improve this hypothesis.

What Next

After this pattern, you will have a class model representing the problem domain concepts. Oth-
er patterns will help you deriving other views on the system, for instance Reconstruct the Per-
sistent Data when you want to learn about the valuable data of an application, or @references
to remaining patterns here@.

Consider to Confer with Colleagues after you did Speculate about Domain Objects, in
order to confirm you results with other findings.

Speculate about Patterns

Like Speculate about Domain Objects, except that you build and refine a hypothesis about
occurances of architectural, analysis or design patterns.

Initial Understanding 12.

While having Read all the Code in One Hour, you might have noticed some symptoms of
patterns. Knowing which patterns have been applied in the system design may help a lot in un-
derstanding it: for instance a Singleton pattern may point to important system-wide services.
You can use a variant of Speculate about Domain Objects to refine this knowledge. See the
better known pattern catalogues [Gamm95a], [Busc96a], [Fowl97b] for patterns to watch out
for. See also [Brow96c] for a discussion on tool support for detecting patterns.

Example

You are facing a 500 K lines C++ program, implementing a software system to display multi-
media information in real time. Your boss asks you to look at how much of the source code can
be resurrected for another project. After having Read all the Code in One Hour, you noticed
an interesting piece of code concerning the reading of the signals on the external video channel.
You suspect that the original software designers have applied some form of observer pattern,
and you want to learn more about the way the observer is notified of events. You will read the
source code and trace interesting paths, this way gradually refining your assumption that the
class "VideoChannel" is the subject being observed.

Speculate about Process Architecture

Like Speculate about Domain Objects, except that you build and refine a hypothesis about
the interacting processes in a distributed system.

The object-oriented paradigm is often applied in the context of distributed systems with multi-
ple cooperating processes. A variant of Speculate about Domain Objects may be applied
to infer which processes exist, how they are launched, how they get terminated and how they
interact. (See [Lea96a] for some typical patterns and idioms that may be applied in concurrent
programming.)

Reconstruct the Persistent Data

Intent

Recover objects that are so valuable that they are stored in a database system.

Problem

You do not know which objects are valuable for the functioning of the system, i.e. that are so
crucial that they require special care in terms of back-up procedures, concurrency control.

13. Reconstruct the Persistent Data

Context

You are in the early stages of reverse engineering a software system, having a rough under-
standing of its functionality. The software system employs some form of a database to make its
data persistent.

You have access to the database and the proper tools to inspect its schema and obtain samples
of data. Besides, you have some expertise with databases and knowledge of how data-struc-
tures from your implementation language are mapped onto the data-structures of the underly-
ing database.

Solution

Check the entities that are stored in the database, as these most likely represent valuable ob-
jects. Derive a class model representing those entities to document that knowledge for the rest
of the team.

Steps

The steps below assume you start with a relational database, which is quite a typical situation
with object-oriented systems. If you have another kind of database system, some of these steps
may still be applicable.

Note that steps 1-3 are quite mechanical and can be automated quite easily.

1. Collect all table names and build a class model, where each table name corresponds to
a class name.

2. For each table, collect all column names and add these as attributes to the correspond-
ing class.

3. Collect all foreign keys relationships between tables and draw an association between
the corresponding classes. (If the foreign key relationships are not maintained explic-
itly in the database schema, then you may infer these from column types and naming
conventions.)

After the above steps, you will have a class model that represents the entities being stored in the
relational database. However, because relational databases cannot represent inheritance rela-
tionships, there is still some cleaning up to do. (The terminology for the three representations
of inheritance relations in steps 4-6 stems from [Fros94a].)

4. Check tables where the primary key also serves as a foreign key to another table, as
this is the "one to one" representation of an inheritance relationship inside a relational
database. Examine the SELECT statements that are executed against these tables to
see whether they usually involve a join over this foreign key. If this is the case, trans-
form the association that corresponds with the foreign key into an inheritance relation-
ship. (see figure 2 (a)).

5. Check tables with common sets of column definitions, as these probably indicate a sit-
uation where the class hierarchy is "rolled down" into several tables, each table repre-
senting one concrete class. Define a common superclass for each cluster of duplicated

Initial Understanding 14.

column definitions and move the corresponding attributes inside the new class. To
name the newly created classes, you can use your imagination, or better, check the
source code for an applicable name. (see figure 2 (b))

6. Check tables with many columns and lots of optional attributes as these may indicate
a situation where a complete class hierarchy is "rolled up" in a single table. If you have
found such a table, examine all the SELECT statements that are executed against this
table. If these SELECT statements explicitly request for subsets of the columns, then
you may break this one class into several classes depending on the subsets requested
(see figure 2 (c))

When you have incorporated the inheritance relationships, consider to improve the class model
exploiting the presence of the legacy system as a source of information. In particular you can ...

-- say something about data sampling and run-time inspection

-- say something about locating mapping code in the system itself

Tradeoffs
• Impact. You should plan to keep the class model up to date while your reverse engineer-

ing project progresses and your understanding of the software system grows. Otherwise

Figure 2 Mapping a series of relational tables onto an inheritance hierarchy.
(a) one to one; (b) rolled down; (c) rolled up

Person
id: ObjectID
name: String
address: String

Student
studentNr: Integer
class: String

Teacher
salary: Real

Person
id: ObjectID
name: String
address: String

Student
id: ObjectID
studentNr: Integer
class: String

Teacher
id: ObjectID
salary: Real

Inheritance Hierarchy
Tables with foreign key relationships

Student
id: ObjectID
name: String
address: String
studentNr: Integer
class: String

Teacher
id: ObjectID
name: String
address: String
salary: Real

Tables with common column definitions

Person
id: ObjectID
name: String
address: String
studentNr: Integer <<optional>>
class: String <<optional>>
address: String <<optional>>
salary: Real <<optional>>
address: String <<optional>>
salary: Real <<optional>>

Large table with many optional columns

(a)

(b)
(c)

15. Reconstruct the Persistent Data

your efforts will be wasted. If your team makes use of a version control system, make
sure that the class model is controlled by that system too.

--

• Requires Database Expertise. In itself, the pattern does not require a lot of reverse en-
gineering expertise. However, a good deal of knowledge about he underlying database
plus constructs to map the database schema into the implementation language is neces-
sary to recognize what you see. As such, the pattern should preferably be applied by peo-
ple having expertise in mappings from the chosen database to the implementation lan-
guage.

• Limited Scope. Although the database is crucial in many of today’s software systems, it
involves but a fraction of the complete system. As such, you cannot rely on this pattern
alone to gain a complete view of the system.

• Polluted Database Schema. The database schema itself is not always the best source of
information to reconstruct a class model for the valuable objects. Many projects must op-
timize database access and as such often sacrifice a clean database schema. Also, the da-
tabase schema itself evolves over time, and as such will slowly detoriate. Therefore, its
is quite important to refine the class model using data sampling and run-time inspection.

Example

You are asked to extend an existing database application so that it will be accessible via the
world-wide web. The initial software system manipulates the business objects (implemented in
C++) stored inside a relational database. You will reconstruct the data model underlying your
business objects by mapping the table definitions in the database on the corresponding C++
classes.

Rationale

Having a well-defined central database schema is a common practice in larger software
projects that deal with persistent data. Not only does it specify common rules on how to access
certain data structures, it is also a great aid in dividing the work between team members. There-
fore, it is a good idea to extract an accurate data model before proceeding with other reverse en-
gineering activities.

Known Uses

The reverse engineering and reengineering of database systems is a well-explored area of re-
search (see among others [Hain96a], [Prem94a], [Jahn97b]). Note the recurring remark that the
database schema alone is too weak a basis and that data sampling and run-time inspection must
be included for successful reconstruction of the data model.

• Data sampling. Database schemas only specify the constraints allowed by the underly-
ing database system and model. However, the problem domain may involve other con-
straints not expressed in the schema. By inspecting samples of the actual data stored in
the database you can infer other constraints.

Initial Understanding 16.

• Run-time inspection. Tables in a relational database schema are linked via foreign
keys. However, it is sometimes the case that some tables are always accessed together,
even if there is no explicit foreign key. Therefore, it is a good idea to check at run-time
which queries are executed against the database engine.

Related Patterns
Reconstruct the Persistent Data requires an initial understanding of the system functionali-
ty, as obtained by applying patterns in the cluster First Contact.

There are some idioms, patterns and pattern languages that describe various ways to map ob-
ject-oriented data constructs on relational database counterparts. See among others [Kell98a],
[Cold99a].

What Next

Reconstruct the Persistent Data results in a class model for the persistent data in your soft-
ware system. Such a data model is quite rough, but it may serve as an ideal initial hypotheses to
be further refined by applying Speculate about Domain Objects. The data model should
also be used as a collective knowledge that comes in handy when doing further reverse engi-
neering efforts, for instance like in the clusters Detailed Model Capture and Prepare Reen-
gineering. Consequently, consider to Confer with Colleagues after Reconstruct the
Persistent Data.

Identify the Largest

Intent
Identify important code by using a metrics tool and inspecting the largest constructs.

Problem
You do not know where the important code is located in the million lines of source code you are
facing.

Context

You are in the early stages of reverse engineering an object-oriented software system, having a
rough understanding of its functionality. You have a metrics tool and a code browser at your dis-
posal.

Solution

Use the metrics tool to collect a limited set of measurements concerning the constructs inside
the software system (i.e., the inheritance hierarchy, the packages, the classes and the methods).

17. Identify the Largest

Display the results in such a way that you can easily assess different measurements for the same
construct. Browse the source code for the large or exceptional constructs to determine whether
the construct represents important functionality.

Steps

The following steps provide some heuristics to identify important functionality using metrics.

1. The inheritance hierarchy.

As inheritance is the most commonly used modelling concept in object-oriented sys-
tems it is a good idea to identify the largest subtree in the inheritance hierarchy as po-
tential candidates for providing important functionality. To do this, compile a list of
classes with the metric Total Number of Subclasses as the main indicator, and
Number of Methods for Class plus Number of Attributes for Class as secondary
indicators.

Look for large inheritance hierarchies that are very deep and shallow, are very broad
and flat, and where the classes have a well distributed size. These ususally correspond
with well-structured part of the inheritance hierarchy and as such are likely to be im-
portant.

2. Packages.

...

3. Classes.

Look for large classes that appear at the top or at the bottom of the hierarchy, or that
stand on themselves.

4. Methods.

...

Example

You are facing an object-oriented system and you want to find out which classes do the bulk of
the work. You will produce a list of all classes where the number of methods exceeds the aver-
age number of methods per class, sort the list and inspect the largest classes manually.

Tradeoffs

Identifying important pieces of functionality in a software system via measurements is a deli-
cate activity which requires expertise in both data collection and interpretation. Below are
some trade offs that you should consider to get the best out of your data.

• Which metrics to collect? In general, it is better to stick to the simple metrics, as the
more complex ones involve more computation, yet will not perform better for the iden-
tification of large constructs.

For instance, to identify large methods it is sufficient to count the lines by counting all
carriage returns or newlines. Most other method size metrics require some form of pars-
ing and this effort is usually not worth the gain.

Initial Understanding 18.

• Which metric variants to use? Usually, it does not make a lot of difference which met-
ric variant is chosen, as long as the choice is clearly stated and applied consistently. Here
as well, it is preferable to choose the most simple variant, unless you have a good reason
to do otherwise.
For instance, while counting the lines of code, you should decide whether to include or
exclude comment lines, or whether you count the lines after the source code has been
normalised via pretty printing. However, when looking for the largest structures it usu-
ally does not pay off to do the extra effort of excluding comment lines or normalizing the
source code.

• What about coupling metrics? Part of what makes a piece of code important is how it
is used by other parts of the system. Such external usage may be revealed by applying
coupling metrics. However, coupling metrics are usually quite complicated, thus go
against our principle of choosing simple metrics. Moreover, there is no consensus in the
literature on what constitute "good" coupling metreics. Therefore, we suggest not to rely
on coupling metrics. If your metrics tool does not include any coupling metrics you can
safely ignore them. Otherwise it is better to calculate them after you have identified some
large constructs.

• Which thresholds to apply? Due to the need for reliability, it is better not to apply
thresholds.1 First of all, because selecting threshold values must be done based on the
coding standards applied in the development team and these you do not necessarily have
access to. Second, because "large" is a relative notion and thresholds will distort your
perspective of what constitutes "large" within the system as you will not know how many
"small" constructs there are.

Note that many metric tools include some visualisation features to help you scan large
volumes of measurements and this is usually a better way to quickly focus on important
constructs.

• How to interpret the results? Large is not necessarily the same as important, so care
must be taken when interpreting the measurement data. To assess whether a construct is
indeed important, it is a good idea to simultaneously inspect different measurements for
the same construct. For instance, combine the size of the class with the number of sub-
classes, because large classes that appear high in a class hierarchy are usually important.

However, formulas that combine different measurements in a single number should be
avoided as you loose the sense for the constituting elements. Therefore it is better to
present the results in a table, where the first column shows the name of the construct, and
the remaining columns show the different measurement data. Sorting these tables ac-
cording to the different measurement columns will help you to identify extreme values.

• Should I browse the code afterwards? Measurements alone cannot determine whether
a construct is truly important: some human assessment is always necessary. However,
metrics are a great aid in quickly identifying constructs that are potentially important and
code browsing is necessary for the actual evaluation. Note that large constructs are usu-

1. Most metric tools allow you to focus on special constructs by specifying some threshold interval and
then only displaying those constructs where the measurements fall into that interval.

19. Identify the Largest

ally quite complicated, thus understanding the corresponding source code may prove to
be difficult.

• What about small constructs? Small constructs may be far more important than the
large ones, because good designers tend to distribute important functionality over a
number of highly reusable and thus smaller components. Conversely, large constructs are
quite often irrelevant as truly important code would have been refactored into smaller
pieces. Still, different larger constructs will share the important smaller constructs, thus
via the larger constructs you are likely to identify some important smaller constructs too.
Anyway, you should be aware that you are only applying a heuristic: there will be im-
portant pieces of code that you will not identify via this pattern.

Rationale

The main reason why size metrics are often applied during reverse engineering is because they
provide a good focus (between 10 to 20/% of the software constructs) for a relatively low in-
vestment. The results are somewhat unreliable, but this can easily be compensated via code
browsing.

Known Uses

In several places in the literature it is mentioned that looking for large object constructs helps
in program understanding (see among others, [Mayr96a], [Kont97a], [Fior98a], [Fior98b],
[Mari98a], [Lewe98a], [Nesi98a]). Unfortunately, none of these incorporated an experiment to
count how much important functionality remains undiscovered. As such it is impossible to as-
sess the reliability of size metrics for reverse engineering.

Note that some metric tools visualise information via typical algorithms for statistical data,
such as histograms and Kiviat diagrams. Visualisation may help to analyse the collected data.
Datrix [Mayr96a], TAC++ [Fior98a], [Fior98b], and Crocodile [Lewe98a] are tools that exhib-
it such visualisation features.

Related Patterns

Looking at large constructs requires little preparation but the results are a bit unreliable. By in-
vesting more in the preparation you may improve the reliability of the results. For instance, if
you invest in program visualisation techniques you can study more aspects of the system in par-
allel, thereby increasing the quality of the outcome. Also, you can Recover Completed Re-
factorings to focus on those parts of the system that change, thereby increasing the likelihood
of identifying interesting constructs and focussing on the way constructs work together.

What Next

By applying this pattern, you will have identified some constructs representing important func-
tionality. Some other patterns may help you to further analyse these constructs. For instance, if
you ..., you will obtain other perspectives and probably other insights as well. Also, if you Step
Through the Execution you will get a better perception of the run-time behaviour. Finally, in

Initial Understanding 20.

the case of a object-oriented code, you can Derive Public Interface to find out how a class is
related to other classes.

Even if the results have to be analysed with care, some of the larger constructs can be candidates
for further reengineering: large methods may be split into smaller ones (see [Fowl99a]), just
like big classes may be cases of a God Class.

Recover Completed Refactorings

Intent

Recover refactorings that have been applied by identifying where functionality has been re-
moved and finding out if it has been moved to another location.

Problem

You do not know how ---and to a certain extent why--- the design of a system has evolved.

Context

You are in a later stage of reverse engineering an evolving software system. You have an overall
understanding of its functionality and you know the main structure of its source code. You have
several releases of the source code at your disposal plus a a metrics tool to detect the differences
between the releases.

Solution

Gather a number of size metrics for two subsequent releases and find constructs that decrease
in size, thus where functionality has been removed. Find out where this functionality has been
moved to and as such recover the refactorings that have been applied. For each refactoring, put
yourself in the role of the original developer and ask yourself what the change is about and why
it was necessary.

Hints

We can recommend three heuristics that help identifying the following refactorings.

• Split into superclass / merge with superclass. Look for the creation or removal of a
superclass (change in hierarchy nesting level - HNL), together with a number of pull-ups
or push-downs of methods and attributes (changes in number of methods - NOM and
number of attributes - NOA).

• Split into subclass / merge with subclass. Look for the creation or removal of a sub-
class (change in number of immediate subclasses- NOC), together with a number of pull-
ups or push-downs of methods and attributes (changes in number of methods - NOM and
number of attributes - NOA).

21. Recover Completed Refactorings

• Move functionality to superclass, subclass or sibling class. Look for removal of
methods and attributes (decreases in number of methods - NOM and number of attributes
- NOA) and use code browsing to identify where this functionality is moved to.

• Split method / factor out common functionality. Look for decreases in method size
(via lines of code - LOC, or number of message sends - MSG, or number of statements
- NOS) and try to identify where that code has been moved to.

Example
You must understand an object-oriented framework that has been adapted several times as the
developers gained insight into the problem domain. You will filter out all classes where the
number of methods and attributes has decreased significantly and find out where that function-
ality has been moved to. With that knowledge, you will make a guess at the design rationale un-
derlying this redistribution of functionality.

Rationale
Because you focus on constructs that decrease in size, you are likely to identify places where
functionality has been moved to other locations. Such moving of functionality is always rele-
vant for reverse engineering, as it reveals design intentions from the original developers.

Satisfying the prerequisite of having different releases of the source code plus the necessary
tools to assess the differences, the main advantages of looking at changes are the following. (i)
It concentrates on relevant parts, because the changes point you to those places where the de-
sign is expanding or consolidating. (ii) It provides an unbiased view of the system, because you
do not have to formulate assumptions of what to expect in the software (this is in contrast to
Speculate about Domain Objects and ...) (iii) It gives an insight in the way components in-
teract, because the changes reveal how functionality is redistributed among constructs (this is
in contrast to Derive Public Interface).

Known Uses
We ran an experiment on three medium sized systems implemented in Smalltalk. As reported
in [Deme99z], these case studies suggest that the heuristics support the reverse engineering
process by focussing attention on the relevant parts of a software system.

Related Patterns
Inspecting changes is a costly but very accurate way of identifying areas of interest in a system.
If you ... or Derive Public Interface you will get less accurate results for a lower amount of
resources.

What Next

By applying this pattern, you will have identified some parts in the design that played a key role
during the system’s evolution. Some other patterns may help you to further analyse these con-
structs. For instance, if you ... you will obtain other perspectives and probably other insights as
well. Also, if you Step Through the Execution you will get a better perception of the run-time

Initial Understanding 22.

behaviour. Finally, in the case of a class, you can Derive Public Interface to find out how this
class is related to other classes.

23. Recover Completed Refactorings

Chapter 4

Detailed Model Capture
-- Due to limitations on EuroPLOP submissions, only part of the full pattern

language is presented. Therefore, only the intent sections of the patterns
in this cluster are preserved. The full versions of these patterns will appear
later.

Derive Public Interface

Intent
Find out how a class is related to other classes by checking the invocations of key methods in
the interface of that class. Two examples of key methods that are easy to recognise are construc-
tors and overridden methods.

Step Through the Execution

Intent
Obtain a detailed understanding of the run-time behaviour of a piece of code by stepping
through its execution.

Prepare Reengineering 24.

Chapter 5

Prepare Reengineering
-- Due to limitations on EuroPLOP submissions, only part of the full pattern

language is presented. Therefore, only one of the patterns is fully
expanded and for the remaining ones only the intent sections are
preserved. The full versions of these patterns will appear later.

The reverse engineering patterns in this cluster are only applicable when your reverse engineer-
ing activities are part of a larger reengineering project. That is, your goal is not only understand-
ing what’s inside the source code of a software system, but also rewriting parts of it. Therefore,
the patterns in this cluster will take advantage of the fact that you will change the source code
anyway.

Write the Tests

Intent
Record your knowledge about how a component reacts to a given input in a number of black box
tests, this way preparing future changes to the system.

Build a Prototype

Intent
Extract the design of a critical but cryptic component via the construction of a prototype which
later may provide the basis for a replacement.

Wrap the Unimportant

Intent
Wrap the parts you consider unnecessary for the future reengineering in a black box compo-
nent.

25. Refactor To Understand

Refactor To Understand

Intent
Obtain better understanding of a specific piece of code by iterative refactoring and renaming.

Problem
The code is so cryptic and its layout is such that it is difficult to read ---hence to understand---
and difficult to know how to add new functionality.

Context

You need to be able to compile the code or at least make a copy of the source. You should also
be able to adapt client code. The code you need to understand is well defined and small (at the
maximum a couple of classes).

Symptoms
• Methods are long.
• Methods contain comments separating parts of the methods.
• Methods have cryptic and not intention revealing names [Beck97].
• Names of the classes are not conveying their responsibilities or roles in the application.
• Attribute names are reduced to cryptic symbols or are not meaningful.

Solution
Iteratively rename and refactor the code to introduce meaningful names and a better structure
that reflects what the system is actually doing.

Hints
• Bottom up. Start by focusing on the attributes with unclear names and give them names

that convey their roles. Start by looking at all the attribute accesses or the accessors calls
and infer a type and/or the purpose of the attributes. Indeed, methods are abstractions that
are built on top of the object intrinsic structure represented by the object attributes. So
understanding and giving meaningful names to the attributes helps to gain an under-
standing of the method purpose.

• Top Down. If you have an external view of the class functionality via the analysis of
tests, you can start to give meaningful names to the public interface of the class. If unit
tests exist read them because they represent some uses of the code you want to under-
stand. The methods used in unit tests are certainly part of the public interface of the ob-
ject. As this may help you to understand the inputs and the outputs of the methods, you
will understand the intention of the methods.

• Leaf of Condition Branches. If you encounter big conditions with large branches and
leaves, extract the leaves as new methods and give them names that are based on the con-
dition until you know more about the system and you rename them.

Prepare Reengineering 26.

• Same Level of Abstraction. As methods represent the elementary unit of reuse in ob-
ject-oriented languagues, try to refactor the code so that methods represent meaningful
pieces of abstractions with one clear responsibility.A good rule of the thumb is to have
the same level of abstraction in method body [Beck97].

• Remove Duplicated Code. If you identify duplicated code, try to refactor it first. In-
deed, by focusing on the same piece of code, you will be able to identify slight differenc-
es that you probably would not have been able to notice when the code was duplicated.
The questions that may rise concerning these differences may reveal some subtle design
points.

• Refactorings Applied. Most of the time you will Rename Attributes, Rename Methods,
and Extract Methods ([RobeThesis, RefactoringPaper,Fowler99]). Code to be extracted
is often separated by comments indicating in the method body the different functionali-
ties.It may also be the case that the decomposition of the class in methods is not suitable
for supporting your refactorings. In such a case you may need to use Inline Self Sends
on certain methods and subsequently apply Extract Methods.

Tradeoffs
• Static vs Iterative Understanding. As an alternative solution, you could print the code

on paper and with some coloured pens try to understand the code. However such an ap-
proach is static. It is difficult to have several iterations. By applying Refactor To Under-
stand your understanding will grow over the iteration. Every steps will fertilize the next
step of understanding.

• Continuous Validation of Changes. During your understanding you are elaborating
hypotheses about the functionality of the code, you should be able to validate them by
checking if the code is running.Moreover, while reading it you may notice some aspects
that you would like to rename or refactor. Only printing the code does not support it. By
applying Refactor To Understand you will be able to validate your changes. Having
unit tests or regression tests can strenghten your belief in your changes [XPBook].

• Knowing What vs How. You could apply Step Through the Code, however this will
provide a view based on a flow of execution whereas what you really want to understand
is the logic of the code to be able to integrate new functionality. By applying Refactor
To Understand you focus on understanding what does the code.

• Limiting Impact and Change Integration. Refactor To Understand can lead you to
make a lot of changes in the system that you are trying to understand. You certainly want
to limit the impact of your changes. There is different ways to limit the impact:
You may work on a separate copy of the part that you want to understand and never re-
introduce the final result into the system. However, you or other members of your team
may lose some really important benefits for future changes. You or other may have to
redo the same work in the future.
You may want to keep the resulting code. In such a case the part of the system on which
you are applying Refactor To Understand should be: small (one to a couple of classes),
not heavily connected to all the parts of your system or possess an interface that you
should keep as a front end between this part and the rest of the system (Check Perdita
Pattern).

27. Refactor To Understand

• Acceptance of Changes. Refactoring your own code is always easier than changing
code that somebody else wrote for a lot of technical reasons but also because of human
communication reasons. Indeed you do not have problem to tell to yourself that your
code was not good but this may be different if somebody else would tell that your code
was wrong. That’s why while applying Refactor To Understand you should always
keep in mind that the original developer of the code may have problems to accept your
changes. You should consider this dimension when thinking about the integration of
your changes into the system.
Alan Sneed [Sneed at WCRE99] reports that he was refactoring Cobol code and remov-
ing in particular goto statements in all the code he was reengineering. However, due to
the pressure of the developers he was forced to reintroduced them because they did not
accept these changes.

• Error vs Code Quality Improvement. The less you change the code, the less chances
you have to introduce errors, so the listing approach is safer than renaming and refactor-
ing the code. There are two ways to limit the risk. One way is to have unit tests and run
them systematically. The other way is that you can apply the pattern on code that you
will not integrate to the system you are working on. This way you can gain an under-
standing and know how to introduce new functionality while limiting the changes of the
system. However, you will lose the possibility to improve the code and reduce its com-
municability to other possible programmers.

• When to stop. It is often difficult to stop changing code when you identify problems in
the code. However depending of the time you have for your task you should pay attention
not to tend to change code for the sake of its purity. Under severe time constraints a rule
is just stop as soon as the new functionality can be introduced.

• When Not to Apply. If the code your code looks like spaghetti code and that you cannot
identify an already structured piece of code, you may problems to limit the impact of the
changes. Moreover, if you chose not to introduce the resulting code in the application
you may have problems to do a clear mapping between the elements of the original code
and the refactored code.

Rationale

This pattern is based on the fact that (1) Refactorings help to improve software implementation
and design quality [Opdy92, Robe98, Fow99], (2) we understand more easily the code we are
writing, and (3) most of the time our understanding does not come in one shot but implies an
iterative process where the previous understanding is the base for the next iteration.

Known Uses
John Brant and Don Roberts presented at ESUG’97 and Smalltalk Solution’97 an example of
the application of this pattern. They show how they understood an algorithm by renaming and
refactoring its code. During the several iterations of the patter, the code slowly started to get
more and more sense and the understanding went growing.

This pattern has been applied on a FAMOOS case study. We have to understand a huge method
of 3000 lines of C++. We extracted all the conditional branch leaves as methods that we named

Prepare Reengineering 28.

them depending of the condition. Then we iterated and discovered that this huge method was in
fact a complete parser for a command system language.

A well defined part of the Moose application, its model extractor, needed to be extended to take
into account namespaces. However, the main functionality was only composed by a couple of
big methods containing a lot of duplication.This pattern has been applied on the particular class
which big public interface methods containing a lot of copy and paste functionality where rec-
omposed into public interfaces methods calling elementary functionality.

Related Patterns
To help to understand the functionality you may apply Step Through the Code. To keep your
questions and annotations you can apply Tie Code and Questions.

What Next

The main result is that you gain an intimate understanding of the part of a system that you re-
factored. The second result is that you may have a better designed piece of code with intention
revealing name. However in the decision to integrate the resulting code into the legacy applica-
tions you should take into account that if you do not have regression tests you may introduce
unexpected bugs.

29. Refactor To Understand

Chapter 6

Miscellaneous

Confer with Colleagues

Intent
Share the information obtained during each reverse engineering activity to boost the collective
understanding about the software system.

God Class
... (see [Brow98a])

List of Metrics 30.

Chapter 7

List of Metrics
5. Class Size Metrics

Number of Methods for Class

Count the number of methods in a class

Variants
• Include or not include private, protected, public

• Include or not the methods defined on class level instead of object level (i.e. static meth-
ods in C++, Jave; class methods in Smalltalk)

• Include or not the constructors

Number of Attributes for Class

Count the number of methods in a class

Variants
• Include or not include private, protected, public

Lines of Code for Class

Count the lines of code for the complete class definition

Variants
• Before or after formatting

• Including or exclusing comment-lines

• Including the class definition itself, or just the sum of all lines of code per method

6. Method Size Metrics

Number of Invocations

Count the number of methods invoked in a method body

Variants
• Include or exclude special invocations, such as operators, procedure calls

31. Refactor To Understand

Lines of Code for Method
Count the lines of code in the method body of a class

Variants
• Before or after formatting
• Including or exclusing comment-lines

7. Inheritance Metrics

Depth of Inheritance Tree
Number of superclasses in the longest superclass chain

Variants
• Including or exclude defaulr roots (i.e., Object in Smalltalk, ...)

Immediate Number of Subclasses
Number of immediate subclasses

Variants
• Include or exclude private/protected subclasses

Total Number of Subclasses
Total number of subclasses for a class

Variants
• Include or exclude private/protected subclasses

