e

A Pattern Language for
Reverse Engineering
v0.4-- March 3, 2000 4:30 pm

http://win-www.uia.ac.be/u/sdemey/Pubs/Deme00n/

Serge Demeyer("), Stéphane Ducasse(™, Oscar Nierstrasz(*)
) University of Antwerp - LORE - http://win-www.uia.ac.be/u/sdemey/
) University of Berne - SCG - http://www.iam.unibe.ch/~scg/

Abstract. Since object-oriented programming is usually associated with iterative develop-
ment, reverse engineering must be considered an essential facet of the object-oriented paradigm.
The reverse engineering pattern language presented here summarises the reverse engineering ex-
perience gathered as part of the FAMOQOS project, aproject with the explicit goal of investigating
reverse and reengineering techniques in an object-oriented context. Due to limitations on Euro-
PLOP submissions, only part of thefull pattern languageis presented, namely the patterns describ-
ing how to gain aninitial understanding of a software system and one pattern preparing subsequent
reengineering.

Thiswork has been funded by the Swiss Government under Project no. NFS-2000-46947.96 and
BBW-96.0015 as well as by the European Union under the ESPRIT program Project no. 21975
(FAMOOS).

Reverse Engineering Patterns 2.

Chapter 1

Reverse Engineering Patterns

1. Introduction

This pattern language describes how to reverse engineer an object-oriented software system.
Reverse engineering might seem abit strangein the context of object-oriented development, as
this term is usually associated with "legacy" systems written in languages like COBOL and
Fortran. Yet, reverseengineeringisvery relevant inthe context of object-oriented development
aswell, because the only way to achieve agood object-oriented design isrecognized to beiter-
ative development (see [Booc944a], [Gold95a], [Jaco97a], [Reen96a]). Iterative development
involvesrefactoring existing designsand consequently, reverse engineering isan essential fac-
et of any object-oriented development process.

The patterns have been developed and applied during the FAMOOS project (http:/
www.iam.unibe.ch/~famoog/); aproject which goal isto produce a set of re-engineering tech-
niques and tool sto support the development of object-oriented frameworks. Many if not all of
the patterns have been applied on software systems provided by the industrial partnersin the
project (i.e., Nokiaand Daimler-Chrysler). These systemsranged from 50.000 lines of C++ up
until 2,5 millionlines of Ada. Where appropriate, we refer to other known useswe were aware
of whilewriting.

We welcome any feedback that would help us do that. We are especialy interested in coarse
grained comments---doesthe structurework? isthe set of risks complete?isthe naming OK?-
-- rather than detailed comments on punctuation, spelling and layout.

Acknowledgments. We would like to thank our EuroPLoP'99 shepherd Kyle Brown: his
comments were so good we considered including him as a co-author. We also want to thank
both Kent Beck and Charles Weir who shepherded a very rough draft of what you hold right
now. Of coursethereisalso Tim Cox, our contact person with the publisher: thanksfor your pa-
tience --- we hope we will not disappoint you. Next, we thank all participants of the FAMOOS
project for providing such afruitful working context. And finally, we thank our colleaguesin
Berne, both in and outside the FAM OOSteam: by workshopping earlier versionsof thispattern
language you have greatly improved this manuscript.

2. Clusters of Patterns

The pattern language has been divided into clusterswhere each cluster groupsanumber of pat-
ternsaddressing asimilar reverse engineering situation. The clusterscorrespond roughly to the
different phases one encounters when reverse engineering alarge software system. Below isa
short description for each of the clusters, whilefigure 1 provides aroad map.

* First Contact. This cluster groups patterns telling you what to do when you have your
very first contact with a software system.

Prepare Reengineering
Refactor To Understand

Detailed Model Capture
Derive Public Interface
Step Through the Execution

Mitial Understanding

Speculate about Domain Objects
Reconstruct the Persistent Data
Identify the Largest

Recover Completed Refactorings

First Contact

Interview During Demo

Read all the Code in One Hour
Skim the Documentation

System Understaning

Resources spent
Figure 1 Overview of the pattern language using clusters.

* Initial Understanding. Here, the patternstell you how to obtain an initial understanding
of a software system, often documented in the form of class models.

* Detailed Model Capture. The patterns in this cluster describe how to get a detailed
understanding of a particular component in your software system.

* Prepare Reengineering. Since reverse engineering often goes together with reengi-
neering, this cluster includes some patterns that help you prepare subsequent reengineer-

ing steps.
3. Risk Factors

Reverse engineering projects include a lot of uncertainty, and to control these uncertainties
some form of risk management is necessary. Consequently, with each phase of the reverse en-
gineering process, you should identify potential risksof project delaysand take appropriate ac-
tionsto reduce these riskg Boeh89a).

To evaluate the applicability of a pattern from arisk management perspective, we introduce a
number of risk factors. We present theserisk factorsat the beginning of each cluster to describe
the most important threats that may jeopardize your reverse engineering project. We also use
theserisk factorsasaway to compareall patterns by showing how each pattern reducesthe cor-
responding risk factor (see Table 1).

» Limited Resources.Because your resources are limited you must be selective in which
parts of the system to reverse engineer. However, if you select the wrong parts, you will
have wasted some of your precious resources. Therefore, in general the less resources
you need to apply, the smaller therisk.

Reverse Engineering Patterns 4,

s |8, | B &8 | 8
o8¢ |38 |ez |3 [S2
=] c foly= @© = ©
£3 6T S8 B |83
SO L ® o £ < »n O

First Contact
Read all the Code in One Hour ++ ++ + - +
Skim the Documentation ++ ++ - + -
Interview During Demo ++ + / + -
Initial Understanding
Speculate about Domain Objects - - ++ ++ +
Reconstruct the Persistent Data - - ++ + ++

Identify the Largest
Recover Completed Refactorings

Detailed Model Capture

Derive Public Interface

Step Through the Execution

Miscellaneous

Confer with Colleagues

Table 1. How each pattern reduces the risk.

Very good: ++, Good: +, Neutral: /, Rather Bad: -, Very bad: --.
Limited Resources: The less resources you need to apply, the better.
Techniques and Tools: The less techniques and tools required, the better.
Reliable Information: The more reliable the information you get, the better.
Abstraction: The more abstract the information obtained, the better.
Sceptical Colleagues: The more credibility you gain, the better.

» Techniques and ToolsFor reverse engineering large scale systems, you need to apply
techniques probably accompanied with tools. However, techniques and tools shape your
thoughts and good reverse engineering, requires an unbiased opinion. Also, techniques
and tools do require resources which you might not be willing to spend. In general, the
less techniques and tools required, the smaller the risk.

* Reliable Information. A reverse engineer is much like a detective that solves amystery
from the scarce cluesthat are available [Will96b]. Aswith all good detective stories, the
different clues and testimonies contradict each other, thus your challenge is to assess
whichinformation isreliable and solve the mystery by coming up with the most plausible
scenario. In general, the more reliable the information you get, the smaller the risk.

» Abstraction. The whole idea of understanding the inner complexities of a software sys-
tem is to construct mental models of portions of it, thus a process of abstraction. For in-

stance, the reengineering taxonomy of Chikofsky and Cross [Chik90a], defines reverse
engineering as "the process of analyzing a subject system to [...] create representations
of thesystem[...] at ahigher level of abstraction”. Once you are able to strip away por-
tions of asystem as being irrelevant for your future needs, you have acquired the neces-
sary understanding to proceed. Moreover, the more details you can confidently strip
away, the higher your understanding and thus the Therefore, the more abstract the infor-
mation obtained, the smaller the risk.

Sceptical ColleaguesAs a reverse engineer, you must deal with three kinds of col-
leagues. Thefirst category arethefaithful, the people who believe that reverse engineer-
ing is necessary and who thrust that you are able to do it. The second is the category of
the sceptic, who believe this reverse engineering of yoursisjust awaste of time and that
its better to start the whole project from scratch. Thethird category is the category of the
fence sitters, who do not have a strong opinion on whether this reverse engineering will
pay off, so they just wait and see what happens. To save your reverse engineering from
ending up in the waste bag, you must keep convincing the faithful, gain credit with the
fence sitters and be wary of the sceptic. In general, the more credibility you gain, the
smaller therisk.

Table 1 showsan overview of how thedifferent patternsreducetherisks. Thisview isespecial-
ly important because it emphasisesthe different trade-off simplied by the patterns. For instance,
it showsthat Read all the Code in One Hour and Skim the Documentation take about the
same amount of resourcesand al so require about the same amount of techniquesand tools (very
little, hencethe ++), yet score differently on thereliability and abstraction level of theresulting
information. Ontheother hand, Speculate about Domain Objects requires more resources,
techniquesand toolsthen the previoustwo (i.e., -), but achievesbetter resultsintermsof reliable
and abstract information.

4. Format of a Reverse Engineering Pattern

All the reverse engineering pattern presented make use of the following format.

Name.Names the pattern after the solution it proposes. The pattern names are verb
phrases to stress the action implied in applying them.

Intent. Provides athumbnail summary of the pattern.

Problem. Describes the problem the pattern is solving. The section starts with a single
sentence summarizing the heart of the problem addressed by the pattern. The section
continues with a context section, which presents the context in which the pattern is sup-
posed to be applied and which should be read as the prerequisites that should be satisfied
before considering the pattern. The problem may also include a Symptoms sections,
which lists some indications you may use to know when the problem occurs.

Solution. Proposes a solution to the problem that is applicable in the given context. The
section starts with a few sentences summarizing the process one is following while ap-
plying the pattern. This section may include a Seps or alist of Hints to be taken in ac-
count when applying the solution.

Tradeoffs. Discussestheissuesthat should be considered when applying the pattern, e.g.
what is the impact, what makes it difficult and when should it not be applied.

Reverse Engineering Patterns 6.

» Example. Provides arealistic example of when and how to apply the pattern.

» Rationale. Provides ajustification of the problem and the solution, plus some technical
discussion of why the solution solves the problem. May also include a discussion on the
Typical Causes of the problem, as away of reassuring people that the problem in itself
does not necessary come from incompetence.

» Known Uses.Presents the known uses of this pattern. Note that all patternsin this pat-
tern language have been developed and applied in the context of the FAMOOS project.
However, this section also presents other reported uses of the pattern we were aware of
while writing the pattern.

* Related Patterns.Links the pattern in aweb of other patterns, explaining how the pat-
terns work together to achieve the global goal of reverse engineering. The section in-
cludes a What Next section which tells you how you may use the output of this pattern
as input for another one.

Chapter 2

First Contact

-- Due to limitations on EuroPLOP submissions, only part of the full pattern
language is presented. Therefore, only the intent sections of the patterns
in this cluster are preserved. We refer the reader the our EuroPLOP99
submission for the full version of these patterns.

Read all the Code in One Hour

Intent

Make aninitial evaluation of the condition of a software system by walking through its source
codeinalimited amount of time.

Skim the Documentation

Intent

Make an initial guess at the functionality of a software system by reading its documentation in
alimited amount of time.

Interview During Demo

Intent

Obtain aninitial feeling for the functionality of a software system by seeing a demo and inter -
viewing the person giving the demo.

Initial Understanding 8.

Chapter 3

Initial Understanding

The patterns in First Contact should have helped you getting some first ideas about the soft-
waresystem. Now istheright timeto refinethoseideasinto aninitial understanding and to doc-
ument that understanding in order to support further reverse engineering activities. The main
priority in this stage of reverse engineering isto get an accurate understanding without spend-
ing too much time on the hairy details.

The patternsin this cluster tell you how to extract adomain model from source code (Specu-
late about Domain Obijects), how to extract a class model from a database (Reconstruct
the Persistent Data), how to identify important chunks of functionality (Identify the Larg-
est), how to recognizewhich refactoringshave been applied inthe past (Recover Completed
Refactorings). Withthisinformation you will probably want to proceed with Detailed Model
Capture.

Risk Reduction

Thelist below is sorted according to the impact the risk factor will have on later reverse engi-
neering activities. To reduce the risk we define some generic principlesthat we emphasised in
the patterns.

* Reliable Information. Since the initial understanding will influence the rest of your
project, accuracy isthe single most important aspect. Consequently, take special precau-
tions to make the extracted models as reliable as possible. In particular, plan for an in-
cremental approach, where you will improve your initial understanding during later ac-
tivities.

* Limited Resources. Documenting the initial understanding is crucial as all subsequent
reverse engineering activities will benefit from it. Consequently, consider Initial Under-
standing a very important activity and therefore plan a substantial amount of your re-
sources here. However, via an incremental approach you can stretch your resources in
time, i.e. you will not alocate all your resources early in the project but rather some of
the resources allocated later should improve the understanding (and corresponding mod-
els) acquired early.

» Techniques and Tools. While obtaining an initial understanding, you can afford the
time and money to apply some heavyweight techniques and purchase some expensive
tools. Yet ---because accuracy is so important--- never rely exclusively on techniques
and tools and always make a critical assessment of their output.

* Abstraction. Understanding means building mental models and models are meant to
strip away details. Y et, detailsare crucial to the overall system [Broo87a]. Consequently,
favor different models where each emphasizes a different perspective and choose the
most appropriate ones when the situation calls for it.

» Sceptical Colleagues. Good models of a software system help a lot because they
greatly improve the communication within a team. However, since they strip away de-

9. Speculate about Domain Objects

tails, you risk to offend those people who spend their time on these details. Also, certain
notations and diagrams may be new to people, and then your diagrams will just be ig-
nored. Consequently, take care in choosing which models to produce and which nota-
tions to use --- they should be helpful to all members of the team.

Speculate about Domain Objects

AKA: Map business objects onto classes

Intent

Progressively refine a domain model against source code, by defining hypotheses about which
objects should be represented in the system and checking these hypotheses against the source
code.

Problem

You do not know how concepts from the problem domain are mapped onto classes in the
source-code.

Context

You are in the early stages of reverse engineering a software system: you have arough under-
standing of itsfunctionality and you are somewhat familiar with the main structure of itssource
code. You haveon-line accessto the source code of the software system and the necessary tools
to browseit (i.e., from an elementary gr ep to afull-fledged code browser). You have reasona-
ble expertise with the implementation language(s) being used.

Solution

Useyour expertiseto devel op ahypothetical classmodel representing the problem domain. Re-
finethat model by inspecting whether the namesin the classmodel occur inthe source codeand
by adapting the model accordingly. Repeat the process untill you're class model stabilizes.

Steps
1. With your understanding of the requirements and usage scenarios, develop a class
model that serves as your initial hypothesis of what to expect in the source code. For
the names of the classes, operations and attributes make a guess based on your expe-
rience and potential naming conventions @é@ the Documentation).

2. Enumerate the names in the class model (that is, names of classes, attributes and op-
erations) and try to find them in the the source code, using whatever tools you have
available. Take care as names inside the source-code do not always match with the
concepts they represento counter this effect, you may rank the names according to
the likelihood that they appear in the source code.

Initial Understanding 10.

3. Keep track of the names which appear in source code (confirm your hypotheses) and
the names which do not match with identifiersin the source code (contradict your hy-
pothesis). Note that mismatches are positive, asthese will trigger the learning process
that you must go through when understanding the system.

4. Adapt the class model based on the mismatches. Such adaptation may involve
(a) renaming, when you discover that the names chosen in the source code do not
match with your hypothesis;
(b) remodelling (@refactoring 2@), when you find out that the source-code representa-
tion of the problem domain concept does not correspond with what you have in your
model. For instance, you may transform an operation into a class, or an attribute into
an operation.
(c) extending, when you detect important elements in the source-code that do not ap-
pear in your class diagram;
(d) seeking alternatives, when you do not find the problem domain concept in the
source-code. This may entail trying synomyms when there are few mismatches but
may also entail defining acompletely different classmodel when therearealot of mis-
matches.

5. Repeat from step 2 until you obtain a class model that is satisfactory.

Hints

The most difficult step while applying this pattern is the development of an initial hypotheses.
Below are some hintsthat may help you to come up with afirst classmodel.

* The usage scenarios that you get ounht#rview During Demo may serve to define
some use cases that in turn help to find out which objects fulfill which roles. (See
[Jaco92a] for use cases and [Reen96a] for role modeling.)

» Use the noun phrases in the requirements as the initial class names and the verb phrases
as the initial method names, as suggested in responsibility-driven design (See [Wirf90b]
for an in depth treatment.)

Tradeoffs

* Impact. You should plan to keep the class model up to date while your reverse engineer-
ing project progresses and your understanding of the software system grows. Otherwise
your efforts will be wasted. If your team makes use of a version control system, make
sure that the class model is controlled by that system too.

* Requires Implementation Expertise.In itself, the pattern does not require alot of re-
verse engineering expertise. However, alarge repertoire of knowledge about idioms, pat-
terns, algorithms, techniquesis necessary to recognize what you see. As such, the pattern
should preferably be applied by experts in the implementation language.

1. In one particul ar reverse engineering experience, we were facing source code that was a mixture of Eng-
lish and German. As you may expect, this complicates matters alot.

11. Speculate about Domain Objects

Example

Rationale

If you Speculate about Domain Objects, you go through alearning process which gainsa
true understanding. In that sense, the contradictions of your hypotheses are asimportant asthe
confirmations, because mismatches force you to consider alternative solutions and assess the
pros and cons of these.

Moreover, the pattern scales up. Thisis especially important as for large object-oriented pro-
grams (over a 100 classes) it quickly becomesimpractical to apply the inverse process, which
isbuilding acomplete classmodel from source code and afterwards condensing it by removing
the noise. Besides being impractical, such an approach does not bring alot of understanding,
because you are forced to focus on the irrelevant noise instead of theimportant concepts.

Known Uses

In[Murp97al, thereisareport of an experiment where asoftware engineer at Microsoft applied
thispattern (itiscalled 'the Reflexion Model’ in the paper) to reverse engineer the C-code of Mi-
crosoft Excel. One of the nice sides of the story isthat the software engineer was a newcomer
to that part of the system and that his colleagues could not spend too much timeto explain him
about it. Yet, after abrief discussion he could come up with an initial hypothesis and then use
the source code to gradually refine his understanding. Note that the paper also includes a de-
scription of alightweight tool to help specifying the model, the mapping from the model to the
source code and the checking of the code against the mode!.

Related Patterns

All the patternsin theFirst Contact cluster are meant to help you in building theinitial hypoth-
esisnow to berefined viaSpeculate about Domain Objects. Afterwards, some of the pat-
ternsin Detailed Model Capture (inparticular, Step Through the Execution) may helpyou
to improvethis hypothesis.

What Next

After thispattern, you will have aclassmodel representing the problem domain concepts. Oth-
er patternswill help you deriving other viewsonthe system, for instanceReconstruct the Per-
sistent Data when you want to |earn about the valuable data of an application, or @references
to remaining patterns here@.

Consider to Confer with Colleagues after you did Speculate about Domain Obijects, in
order to confirm you resultswith other findings.

Speculate about Patterns

Like Speculate about Domain Obijects, except that you build and refine a hypothesis about
occurances of architectural, analysisor design patterns.

Initial Understanding 12.

While having Read all the Code in One Hour, you might have noticed some symptoms of
patterns. Knowing which patterns have been applied in the system design may help alot in un-
derstanding it: for instance a Singleton pattern may point to important system-wide services.
You can useavariant of Speculate about Domain Objects to refinethisknowledge. Seethe
better known pattern catalogues [Gamm95a), [Busc96a)], [Fowl97b] for patterns to watch out
for. See aso [Brow96c] for adiscussion on tool support for detecting patterns.

Example

You are facing a500 K lines C++ program, implementing a software system to display multi-
mediainformationin real time. Your boss asksyou to look at how much of the source code can
beresurrected for another project. After havingRead all the Code in One Hour, you noticed
aninteresting piece of code concerning thereading of the signalson the external video channel.
You suspect that the original software designers have applied some form of observer pattern,
and you want to learn more about the way the observer isnotified of events. You will read the
source code and trace interesting paths, this way gradually refining your assumption that the
class"vi deoChannel " isthe subject being observed.

Speculate about Process Architecture

Like Speculate about Domain Obijects, except that you build and refine a hypothesi s about
the interacting processesin a distributed system.

The object-oriented paradigm is often applied in the context of distributed systemswith multi-
ple cooperating processes. A variant of Speculate about Domain Objects may be applied
to infer which processes exist, how they are launched, how they get terminated and how they
interact. (See[Lea96a] for sometypical patternsand idiomsthat may be applied in concurrent
programming.)

Reconstruct the Persistent Data

Intent

Recover objectsthat are so valuablethat they are stored in a database system.

Problem

You do not know which objects are valuable for the functioning of the system, i.e. that are so
crucial that they require special careinterms of back-up procedures, concurrency control.

13. Reconstruct the Persistent Data

Context

You are in the early stages of reverse engineering a software system, having a rough under-
standing of itsfunctionality. The software system employs some form of adatabaseto makeits
data persistent.

You have access to the database and the proper tools to inspect its schema and obtain samples
of data. Besides, you have some expertise with databases and knowledge of how data-struc-
tures from your implementation language are mapped onto the data-structures of the underly-
ing database.

Solution

Check the entities that are stored in the database, as these most likely represent valuable ob-
jects. Derive aclass model representing those entities to document that knowledge for the rest
of theteam.

Steps

The steps below assume you start with arelational database, which isquite atypical situation
with object-oriented systems. If you have another kind of database system, some of these steps
may still be applicable.

Notethat steps 1-3 are quite mechanical and can be automated quite easily.

1. Collect al table names and build a class model, where each table name correspondsto
aclass name.

2. For eachtable, collect all column names and add these as attributes to the correspond-
ing class.

3. Collect all foreign keys relationships between tables and draw an association between
the corresponding classes. (If the foreign key relationships are not maintained explic-
itly in the database schema, then you may infer these from column types and naming
conventions.)

After theabove steps, you will have aclassmodel that representsthe entitiesbeing storedinthe
relational database. However, because relational databases cannot represent inheritance rela-
tionships, there is still some cleaning up to do. (The terminology for the three representations
of inheritancerelationsin steps 4-6 stemsfrom [Fros94a].)

4. Check tables where the primary key also serves as a foreign key to another table, as
thisisthe "oneto one" representation of an inheritance relationship inside arelational
database. Examine the SELECT statements that are executed against these tables to
see whether they usually involve ajoin over thisforeign key. If thisisthe case, trans-
form the association that corresponds with the foreign key into an inheritance relation-
ship. (seefigure 2 (a)).

5. Check tableswith common sets of column definitions, as these probably indicate asit-
uation where the class hierarchy is"rolled down" into several tables, each table repre-
senting one concrete class. Define acommon superclass for each cluster of duplicated

Initial Understanding 14.

(a)>

Tables with foreign key relationships Inheritance Hierarchy

Person
id: ObjectID
name: String
address: String

Person
id: ObjectID B
name: String
address: String

—>

ﬁ&

Student Teacher | |
id: ObjectID id: ObjectID Student Teacher
studentNr: Integer salary: Real studentNr: Integer salary: Real
class: String class: String
DY
) (©)
Tables with common column definitions Large table with many optional columns
Student Teacher Person
id: ObjectID id: ObjectID id: ObjectID
name: String name: String name: String
address: String address: String address: String
studentNr: Integer salary: Real studentNr: Integer <<optional>>
class: String class: String <<optional>>
address: String <<optional>>
salary: Real <<optional>>
address: String <<optional>>
salary: Real <<optional>>

Figure 2 Mapping a series of relational tables onto an inheritance hierarchy.
(a) one to one; (b) rolled down; (c) rolled up

column definitions and move the corresponding attributes inside the new class. To
name the newly created classes, you can use your imagination, or better, check the
source code for an applicable name. (see figure 2 (b))

6. Check tables with many columns and lots of optional attributes as these may indicate
asituation where acomplete class hierarchy is"rolled up" inasingletable. If you have
found such atable, examine all the SELECT statements that are executed against this
table. If these SELECT statements explicitly request for subsets of the columns, then
you may break this one class into several classes depending on the subsets requested
(seefigure 2 (c))

When you haveincorporated theinheritancerel ationships, consider toimprovethe classmodel
exploiting the presence of thelegacy system asasource of information. In particular youcan...

-- say something about data sampling and run-time inspection
-- say something about locating mapping code in the system itself

Tradeoffs

» Impact. Y ou should plan to keep the class model up to date while your reverse engineer-
ing project progresses and your understanding of the software system grows. Otherwise

15. Reconstruct the Persistent Data

your efforts will be wasted. If your team makes use of a version control system, make
sure that the class model is controlled by that system too.

* Requires Database Expertisdn itself, the pattern does not require alot of reverse en-
gineering expertise. However, a good deal of knowledge about he underlying database
plus constructs to map the database schema into the implementation language is neces-
sary to recognize what you see. Assuch, the pattern should preferably be applied by peo-
ple having expertise in mappings from the chosen database to the implementation lan-

guage.

» Limited Scope.Although the database is crucial in many of today’s software systems, it
involves but a fraction of the complete system. As such, you cannot rely on this pattern
alone to gain a complete view of the system.

» Polluted Database Schemarl he database schemaitself is not always the best source of
information to reconstruct a classmodel for the valuabl e objects. Many projects must op-
timi ze database access and as such often sacrifice a clean database schema. Also, the da-
tabase schema itself evolves over time, and as such will slowly detoriate. Therefore, its
IS quite important to refine the class model using data sampling and run-time inspection.

Example

You are asked to extend an existing database application so that it will be accessible via the
world-wideweb. Theinitial software system mani pul atesthe business objects (implementedin
C++) stored inside arelational database. You will reconstruct the data model underlying your
business objects by mapping the table definitions in the database on the corresponding C++
classes.

Rationale

Having a well-defined central database schema is a common practice in larger software
projectsthat deal with persistent data. Not only doesit specify common rules on how to access
certain datastructures, itisalso agreat aid in dividing the work between team members. There-
fore, itisagood ideato extract an accurate datamodel before proceeding with other reverseen-
gineering activities.

Known Uses

The reverse engineering and reengineering of database systemsis awell-explored area of re-
search (seeamong others[Hain96a], [Prem94a], [Jahn97b]). Notetherecurring remark that the
database schemaaloneistoo weak abasisand that data sampling and run-time inspection must
beincluded for successful reconstruction of the datamodel.

» Data sampling.Database schemas only specify the constraints allowed by the underly-
ing database system and model. However, the problem domain may involve other con-
straints not expressed in the schema. By inspecting samples of the actual data stored in
the database you can infer other constraints.

Initial Understanding 16.

* Run-time inspection.Tables in a relational database schema are linked via foreign
keys. However, it is sometimes the case that some tables are aways accessed together,
even if thereis no explicit foreign key. Therefore, it is agood ideato check at run-time
which queries are executed against the database engine.

Related Patterns

Reconstruct the Persistent Data requires an initial understanding of the system functionali-
ty, as obtained by applying patternsin the cluster First Contact.

There are some idioms, patterns and pattern languages that describe various ways to map ob-
ject-oriented data constructs on relational database counterparts. See among others[Kell98a],
[Cold99a].

What Next

Reconstruct the Persistent Data resultsin aclass model for the persistent datain your soft-
ware system. Such adatamodel isquiterough, but it may serveasanideal initial hypothesesto
be further refined by applying Speculate about Domain Objects. The data model should
also be used as a collective knowledge that comes in handy when doing further reverse engi-
neering efforts, for instancelikeinthe clusters Detailed Model Capture and Prepare Reen-
gineering. Consequently, consider to Confer with Colleagues after Reconstruct the
Persistent Data.

ldentify the Largest

Intent

| dentify important code by using a metricstool and inspecting the largest constructs.

Problem

You do not know wheretheimportant codeislocated in the million linesof source codeyou are
facing.

Context

You areinthe early stages of reverse engineering an object-oriented software system, having a
rough understanding of itsfunctionality. You haveametricstool and acode browser at your dis-
posal.

Solution

Use the metricstool to collect alimited set of measurements concerning the constructsinside
the software system (i.e., the inheritance hierarchy, the packages, the classes and the methods).

17. Identify the Largest

Display theresultsin such away that you can easily assessdifferent measurementsfor the same
construct. Browsethe source code for the large or exceptional constructsto determine whether
the construct representsimportant functionality.

Steps
Thefollowing steps provide some heuristicsto identify important functionality using metrics.

1. Theinheritance hierarchy.

As inheritance is the most commonly used modelling concept in object-oriented sys-
temsit isagood ideato identify the largest subtree in the inheritance hierarchy as po-
tential candidates for providing important functionality. To do this, compile a list of
classes with the metric Total Number of Subclasses as the main indicator, and
Number of Methods for Class plus Number of Attributes for Class as secondary
indicators.

Look for large inheritance hierarchies that are very deep and shallow, are very broad
and flat, and where the classes have awell distributed size. These ususally correspond
with well-structured part of the inheritance hierarchy and as such are likely to be im-
portant.

2. Packages.

3. Classes.

Look for large classes that appear at the top or at the bottom of the hierarchy, or that
stand on themselves.

4. Methods.

Example

You are facing an obj ect-oriented system and you want to find out which classes do the bulk of
thework. You will producealist of al classes where the number of methods exceeds the aver-
age number of methods per class, sort the list and inspect the largest classes manually.

Tradeoffs

Identifying important pieces of functionality in a software system via measurementsis a deli-
cate activity which requires expertise in both data collection and interpretation. Below are
some trade offs that you should consider to get the best out of your data.

* Which metrics to collect?In generd, it is better to stick to the simple metrics, as the
more complex ones involve more computation, yet will not perform better for the iden-
tification of large constructs.

For instance, to identify large methods it is sufficient to count the lines by counting all
carriage returns or newlines. Most other method size metrics require some form of pars-
ing and this effort is usually not worth the gain.

Initial Understanding 18.

* Which metric variants to use?Usually, it does not make alot of difference which met-

ric variant is chosen, aslong asthe choiceisclearly stated and applied consistently. Here
aswell, it is preferable to choose the most simple variant, unless you have a good reason
to do otherwise.
For instance, while counting the lines of code, you should decide whether to include or
exclude comment lines, or whether you count the lines after the source code has been
normalised via pretty printing. However, when looking for the largest structures it usu-
ally does not pay off to do the extra effort of excluding comment lines or normalizing the
source code.

» What about coupling metrics?Part of what makes a piece of code important is how it
is used by other parts of the system. Such external usage may be revealed by applying
coupling metrics. However, coupling metrics are usually quite complicated, thus go
against our principle of choosing simple metrics. Moreover, thereis no consensusin the
literature on what constitute "good" coupling metreics. Therefore, we suggest not to rely
on coupling metrics. If your metrics tool does not include any coupling metrics you can
safely ignore them. Otherwiseit isbetter to cal culate them after you haveidentified some
large constructs.

» Which thresholds to apply?Due to the need for reliability, it is better not to apply
thresholds.® First of all, because selecting threshold values must be done based on the
coding standards applied in the devel opment team and these you do not necessarily have
access to. Second, because "large” is a relative notion and thresholds will distort your
perspective of what constitutes"large” within the system asyou will not know how many
"small" constructs there are.

Note that many metric tools include some visualisation features to help you scan large
volumes of measurements and thisis usually a better way to quickly focus on important
constructs.

* How to interpret the results?Large is not necessarily the same as important, so care
must be taken when interpreting the measurement data. To assess whether a construct is
indeed important, it isagood ideato simultaneoudly inspect different measurements for
the same construct. For instance, combine the size of the class with the number of sub-
classes, because large classes that appear high in aclass hierarchy are usually important.

However, formulas that combine different measurements in a single number should be
avoided as you loose the sense for the constituting elements. Therefore it is better to
present the resultsin atable, where the first column shows the name of the construct, and
the remaining columns show the different measurement data. Sorting these tables ac-
cording to the different measurement columns will help you to identify extreme values.

» Should | browse the code afterwards™ easurements alone cannot determine whether
a construct is truly important: some human assessment is always necessary. However,
metricsare agreat aid in quickly identifying constructsthat are potentially important and
code browsing is necessary for the actual evaluation. Note that large constructs are usu-

1. Most metric tools allow you to focus on specia constructs by specifying some threshold interval and
then only displaying those constructs where the measurements fall into that interval.

19. Identify the Largest

ally quite complicated, thus understanding the corresponding source code may prove to
be difficult.

* What about small constructs?Small constructs may be far more important than the
large ones, because good designers tend to distribute important functionality over a
number of highly reusable and thus smaller components. Conversely, large constructsare
quite often irrelevant as truly important code would have been refactored into smaller
pieces. Still, different larger constructs will share the important smaller constructs, thus
viathe larger constructs you are likely to identify some important smaller constructstoo.
Anyway, you should be aware that you are only applying a heuristic: there will be im-
portant pieces of code that you will not identify viathis pattern.

Rationale

The main reason why size metrics are often applied during reverse engineering is because they
provide a good focus (between 10 to 20/% of the software constructs) for arelatively low in-
vestment. The results are somewhat unreliable, but this can easily be compensated via code
browsing.

Known Uses

In several placesin theliterature it is mentioned that |ooking for large object constructs helps
in program understanding (see among others, [Mayr96a], [Kont97a], [Fior98a], [Fior98b],
[Mari98a], [Lewe9d8a], [Nesi98a]). Unfortunately, none of theseincorporated an experiment to
count how much important functionality remains undiscovered. Assuchitisimpossibleto as-
sessthereliability of size metricsfor reverse engineering.

Note that some metric tools visualise information via typical algorithms for statistical data,
such as histograms and Kiviat diagrams. Visualisation may help to analyse the collected data.
Datrix [Mayr96a], TAC++ [Fior98a], [Fior98b], and Crocodile [Lewe98a] aretoolsthat exhib-
it such visualisation features.

Related Patterns

Looking at large constructsrequires little preparation but the resultsare abit unreliable. By in-
vesting more in the preparation you may improve the reliability of the results. For instance, if
youinvest in program visualisation techniquesyou can study more aspects of the systemin par-
allel, thereby increasing the quality of the outcome. Also, you can Recover Completed Re-
factorings to focus on those parts of the system that change, thereby increasing the likelihood
of identifying interesting constructs and focussing on the way constructs work together.

What Next

By applying thispattern, you will haveidentified some constructs representing important func-
tionality. Some other patterns may help you to further analyse these constructs. For instance, if
you ..., youwill obtain other perspectivesand probably other insightsaswell. Also, if you Step
Through the Execution you will get abetter perception of the run-time behaviour. Finaly, in

Initial Understanding 20.

the case of a object-oriented code, you can Derive Public Interface to find out how aclassis
related to other classes.

Evenif theresultshaveto beanalysed with care, someof thelarger constructscan be candidates
for further reengineering: large methods may be split into smaller ones (see [Fowl99a)]), just
like big classes may be cases of aGod Class.

Recover Completed Refactorings

Intent

Recover refactorings that have been applied by identifying where functionality has been re-
moved and finding out if it has been moved to another location.

Problem

You do not know how ---and to a certain extent why--- the design of asystem has evolved.

Context

You areinalater stage of reverse engineering an evolving software system. You havean overall
understanding of itsfunctionality and you know the main structure of itssource code. You have
several releasesof the source code at your disposal plusaametricstool to detect the differences
between the releases.

Solution

Gather a number of size metricsfor two subsequent releases and find constructs that decrease
in size, thus where functionality has been removed. Find out where thisfunctionality has been
moved to and as such recover the refactoringsthat have been applied. For each refactoring, put
yourself intherole of theoriginal developer and ask yourself what the changeisabout and why
it was necessary.

Hints
We can recommend three heuristics that help identifying the following refactorings.

» Split into superclass / merge with superclas$.ook for the creation or remova of a
superclass (change in hierarchy nesting level - HNL), together with anumber of pull-ups
or push-downs of methods and attributes (changes in number of methods - NOM and
number of attributes - NOA).

» Split into subclass / merge with subclas$.ook for the creation or removal of a sub-
class (change in number of immediate subclasses- NOC), together with anumber of pull-
upsor push-downs of methods and attributes (changes in number of methods- NOM and
number of attributes- NOA).

21. Recover Completed Refactorings

* Move functionality to superclass, subclass or sibling claskook for remova of
methods and attributes (decreasesin number of methods- NOM and number of attributes
- NOA) and use code browsing to identify where this functionality is moved to.

» Split method / factor out common functionality.Look for decreases in method size
(vialines of code - LOC, or number of message sends - MSG, or number of statements
- NOS) and try to identify where that code has been moved to.

Example

You must understand an object-oriented framework that has been adapted several timesasthe
developers gained insight into the problem domain. You will filter out all classes where the
number of methods and attributes has decreased significantly and find out where that function-
ality hasbeen moved to. With that knowledge, you will make aguessat the design rationale un-
derlying thisredistribution of functionality.

Rationale

Because you focus on constructs that decrease in size, you are likely to identify places where
functionality has been moved to other locations. Such moving of functionality is alwaysrele-
vant for reverse engineering, asit revealsdesign intentionsfrom the original developers.

Satisfying the prerequisite of having different releases of the source code plus the necessary
toolsto assess the differences, the main advantages of looking at changes are thefollowing. (i)
It concentrates on relevant parts, because the changes point you to those places where the de-
signisexpanding or consolidating. (ii) It providesan unbiased view of the system, because you
do not have to formul ate assumptions of what to expect in the software (thisisin contrast to
Speculate about Domain Objects and...) (iii) It givesan insight in the way componentsin-
teract, because the changes reveal how functionality is redistributed among constructs (thisis
in contrast to Derive Public Interface).

Known Uses

We ran an experiment on three medium sized systems implemented in Smalltalk. Asreported
in [Deme99z], these case studies suggest that the heuristics support the reverse engineering
process by focussing attention on the relevant parts of a software system.

Related Patterns

Inspecting changesisacostly but very accurateway of identifying areasof interest in asystem.
If you ... or Derive Public Interface you will get less accurate results for alower amount of
resources.

What Next

By applying thispattern, youwill haveidentified some partsinthedesign that played akey role
during the system’s evolution. Some other patterns may help you to further analyse these con-
structs. For instance, if you ... you will obtain other perspectives and probably other insights as
well. Also, if you Step Through the Execution you will get abetter perception of therun-time

Initial Understanding 22.

behaviour. Finally, in the case of aclass, you can Derive Public Interface to find out how this
classisrelated to other classes.

23. Recover Completed Refactorings

Chapter 4

Detailed Model Capture

-- Due to limitations on EuroPLOP submissions, only part of the full pattern
language is presented. Therefore, only the intent sections of the patterns
in this cluster are preserved. The full versions of these patterns will appear
later.

Derive Public Interface

Intent

Find out how a classisrelated to other classes by checking the invocations of key methodsin
theinterface of that class. Two examplesof key methodsthat are easy to recognise are construc-
torsand overridden methods.

Step Through the Execution

Intent

Obtain a detailed understanding of the run-time behaviour of a piece of code by stepping
through its execution.

Prepare Reengineering 24.

Chapter 5

Prepare Reengineering

-- Due to limitations on EuroPLOP submissions, only part of the full pattern
language is presented. Therefore, only one of the patterns is fully
expanded and for the remaining ones only the intent sections are
preserved. The full versions of these patterns will appear later.

Thereverse engineering patternsin thiscluster areonly applicablewhen your reverse engineer-
ing activitiesarepart of alarger reengineering project. That is, your goal isnot only understand-
ing what'sinside the source code of a software system, but also rewriting parts of it. Therefore,
the patternsin this cluster will take advantage of the fact that you will change the source code

Write the Tests

Intent

Record your knowl edge about how a component reactsto a giveninput inanumber of black box
tests, thisway preparing future changesto the system.

Build a Prototype

Intent

Extract thedesign of a critical but cryptic component via the construction of a prototype which
later may provide the basis for a replacement.

Wrap the Unimportant

Intent

Wrap the parts you consider unnecessary for the future reengineering in a black box compo-
nent.

25. Refactor To Understand

Refactor To Understand

Intent

Obtain better under standing of a specific piece of code by iterative refactoring and renaming.

Problem

The codeisso cryptic and itslayout is such that it is difficult to read ---hence to understand---
and difficult to know how to add new functionality.

Context

You need to be able to compile the code or at |east make a copy of the source. You should also
be able to adapt client code. The code you need to understand iswell defined and small (at the
maximum a coupl e of classes).

Symptoms
* Methods are long.
Methods contain comments separating parts of the methods.
Methods have cryptic and not intention revealing names [Beck97].
» Names of the classes are not conveying their responsibilities or roles in the application.
Attribute names are reduced to cryptic symbols or are not meaningful.

Solution

Iteratively rename and refactor the code to introduce meaningful names and a better structure
that reflects what the system is actually doing.

Hints
» Bottom up. Start by focusing on the attributes with unclear names and give them names
that convey their roles. Start by looking at all the attribute accesses or the accessors calls
and infer atype and/or the purpose of the attributes. Indeed, methods are abstractionsthat
are built on top of the object intrinsic structure represented by the object attributes. So
understanding and giving meaningful names to the attributes helps to gain an under-
standing of the method purpose.

» Top Down. If you have an external view of the class functionality via the analysis of
tests, you can start to give meaningful names to the public interface of the class. If unit
tests exist read them because they represent some uses of the code you want to under-
stand. The methods used in unit tests are certainly part of the public interface of the ob-
ject. Asthis may help you to understand the inputs and the outputs of the methods, you
will understand the intention of the methods.

» Leaf of Condition Branches.If you encounter big conditions with large branches and
leaves, extract the leaves as new methods and give them namesthat are based on the con-
dition until you know more about the system and you rename them.

Prepare Reengineering 26.

» Same Level of Abstraction As methods represent the elementary unit of reuse in ob-
ject-oriented languagues, try to refactor the code so that methods represent meaningful
pieces of abstractions with one clear responsibility.A good rule of the thumb is to have
the same level of abstraction in method body [Beck97].

* Remove Duplicated Codelf you identify duplicated code, try to refactor it first. In-
deed, by focusing on the same piece of code, you will be ableto identify slight differenc-
es that you probably would not have been able to notice when the code was duplicated.
The questions that may rise concerning these differences may reveal some subtle design
points.

» Refactorings Applied.Most of the time you will Rename Attributes, Rename Methods,
and Extract Methods ([RobeThesis, RefactoringPaper,Fowler99]). Code to be extracted
is often separated by comments indicating in the method body the different functionali-
ties.It may also be the case that the decomposition of the classin methodsis not suitable
for supporting your refactorings. In such a case you may need to use Inline Self Sends
on certain methods and subsequently apply Extract Methods.

Tradeoffs

* Static vs Iterative Understanding. Asan alternative solution, you could print the code
on paper and with some coloured pens try to understand the code. However such an ap-
proachisstatic. Itisdifficult to have several iterations. By applying Refactor To Under-
stand your understanding will grow over the iteration. Every stepswill fertilize the next
step of understanding.

» Continuous Validation of Changes.During your understanding you are elaborating
hypotheses about the functionality of the code, you should be able to validate them by
checking if the code is running.Moreover, while reading it you may notice some aspects
that you would like to rename or refactor. Only printing the code does not support it. By
applying Refactor To Understand you will be able to validate your changes. Having
unit tests or regression tests can strenghten your belief in your changes [XPBook].

» Knowing What vs How. Y ou could apply Step Through the Code, however this will
provide aview based on aflow of execution whereas what you really want to understand
isthe logic of the code to be able to integrate new functionality. By applying Refactor
To Understand you focus on understanding what does the code.

» Limiting Impact and Change Integration. Refactor To Understand can lead you to
make alot of changesin the system that you are trying to understand. Y ou certainly want
to limit the impact of your changes. There is different waysto limit the impact:

Y ou may work on a separate copy of the part that you want to understand and never re-
introduce the final result into the system. However, you or other members of your team
may lose some really important benefits for future changes. You or other may have to
redo the same work in the future.

Y ou may want to keep the resulting code. In such a case the part of the system on which
you are applying Refactor To Understand should be: small (oneto acouple of classes),
not heavily connected to all the parts of your system or possess an interface that you
should keep as a front end between this part and the rest of the system (Check Perdita
Pattern).

27. Refactor To Understand

» Acceptance of ChangedRefactoring your own code is aways easier than changing
code that somebody else wrote for alot of technical reasons but also because of human
communication reasons. Indeed you do not have problem to tell to yourself that your
code was not good but this may be different if somebody else would tell that your code
was wrong. That's why while applyirgefactor To Understand you should always
keep in mind that the original developer of the code may have problems to accept your
changes. You should consider this dimension when thinking about the integration of
your changes into the system.

Alan Sneed [Sneed at WCRE99] reports that he was refactoring Cobol code and remov-
ing in particular goto statements in all the code he was reengineering. However, due to
the pressure of the developers he was forced to reintroduced them because they did not
accept these changes.

» Error vs Code Quality Improvement. The less you change the code, the less chances
you have to introduce errors, so the listing approach is safer than renaming and refactor-
ing the code. There are two ways to limit the risk. One way is to have unit tests and run
them systematically. The other way is that you can apply the pattern on code that you
will not integrate to the system you are working on. This way you can gain an under-
standing and know how to introduce new functionality while limiting the changes of the
system. However, you will lose the possibility to improve the code and reduce its com-
municability to other possible programmers.

* When to stop.It is often difficult to stop changing code when you identify problemsin
the code. However depending of the time you havefor your task you should pay attention
not to tend to change code for the sake of its purity. Under severe time constraints arule
isjust stop as soon as the new functionality can be introduced.

* When Not to Apply. If the code your code looks like spaghetti code and that you cannot
identify an already structured piece of code, you may problemsto limit the impact of the
changes. Moreover, if you chose not to introduce the resulting code in the application
you may have problemsto do a clear mapping between the elements of the original code
and the refactored code.

Rationale

Thispatternisbased onthefact that (1) Refactorings hel p to improve softwareimplementation
and design quality [Opdy92, Robe98, Fow99], (2) we understand more easily the code we are
writing, and (3) most of the time our understanding does not come in one shot but implies an
iterative process where the previous understanding isthe base for the next iteration.

Known Uses

John Brant and Don Roberts presented at ESUG’97 and Smalltalk Solution’97 an example of
the application of this pattern. They show how they understood an algorithm by renaming and
refactoring its code. During the several iterations of the patter, the code slowly started to get
more and more sense and the understanding went growing.

This pattern has been applied on a FAMOOS case study. We have to understand a huge method
of 3000 lines of C++. We extracted all the conditional branch leaves as methods that we named

Prepare Reengineering 28.

them depending of the condition. Then weiterated and discovered that thishuge method wasin
fact acomplete parser for acommand system language.

A well defined part of the Moose application, itsmodel extractor, needed to be extended to take
into account namespaces. However, the main functionality was only composed by a couple of
big methods containing alot of duplication.Thispattern hasbeen applied onthe particular class
which big public interface methods containing alot of copy and paste functionality where rec-
omposed into public interfaces methods calling elementary functionality.

Related Patterns

To help to understand the functionality you may apply Step Through the Code. To keep your
guestions and annotations you can apply Tie Code and Questions.

What Next

The main result isthat you gain an intimate understanding of the part of a system that you re-
factored. The second result isthat you may have a better designed piece of code with intention
revealing name. However inthe decisionto integrate the resulting codeinto thelegacy applica
tions you should take into account that if you do not have regression tests you may introduce
unexpected bugs.

29. Refactor To Understand

Chapter 6

Miscellaneous

Confer with Colleagues

Intent

Sharetheinformation obtained during each rever se engineering activity to boost the coll ective
under standing about the software system.

God Class
... (see[Brow98a])

List of Metrics 30.

Chapter 7

List of Metrics

5. Class Size Metrics

Number of Methods for Class

Count the number of methodsin a class

Variants
* Include or not include private, protected, public

* Include or not the methods defined on class level instead of object level (i.e. static meth-
ods in C++, Jave; class methods in Smalltalk)

* Include or not the constructors

Number of Attributes for Class

Count the number of methodsin a class

Variants
* Include or not include private, protected, public

Lines of Code for Class

Count thelines of code for the complete class definition

Variants
» Before or after formatting
* Including or exclusing comment-lines
* Including the class definition itself, or just the sum of all lines of code per method

6. Method Size Metrics

Number of Invocations
Count the number of methodsinvoked in a method body

Variants
* Include or exclude special invocations, such as operators, procedure calls

31. Refactor To Understand

Lines of Code for Method

Count the lines of code in the method body of a class

Variants
» Before or after formatting
* Including or exclusing comment-lines

7. Inheritance Metrics

Depth of Inheritance Tree

Number of superclassesin thelongest superclass chain

Variants
* Including or exclude defaulr roots (i.e., Object in Smalltalk, ...)

Immediate Number of Subclasses

Number of immediate subclasses

Variants
* Include or exclude private/protected subclasses

Total Number of Subclasses

Total number of subclassesfor a class

Variants
* Include or exclude private/protected subclasses

