
Submission to EuroPLoP 2000 1

���������	�
���

�����������	�
��

�
���������

SYSTOR AG

Peter-Merian-Strasse 84
CH-4002 Basel

Switzerland
E-mail: oliver.vogel@systor.com

�����
��
The Abstract Factory pattern is a solution often used for isolating clients from the construction
of concrete objects. Normally a new concrete factory class is developed for each concrete
product family. Therefore new specific construction code has to be written each time a new
product family needs to be supported. This approach influences software productivity nega-
tively as it does only cover the reuse of design ideas. In order to minimize the effort involved
in supporting a new product family, the reuse of code should also be achieved. A configurable
factory as described in the implementation section of the Abstract Factory pattern would be
an appropriate solution. This would result in less implementation effort and thus in an in-
creased software productivity. The Generic Factory pattern describes how to realize a config-
urable factory.

�

������
����
Object Creational

��
��
�
Consider an application that has to deal with two problem domains: workflow and organisa-
tion. Within the workflow domain, abstractions like Process, ProcessDef and WfHandler can
be found. A ProcessDef object describes a process and a Process object represents an ac-
tual workflow process that can be instantiated on a workflow system via a workflow handler
object (WfHandler). A WfHandler is a singleton. That means that there can be only one
WfHandler per workflow system. Imagine that the application should be able to support differ-
ent workflow systems. At first, the Livelink workflow system shall be used. In the future, it
might be possible to migrate to a workflow system by another vendor, i.e. Staffware, or to
support several simultaneously. In order to enable clients to work with different concrete
workflow systems without knowing them directly, interfaces need to be introduced. This allows
clients to communicate with concrete objects through their abstract interface. In the workflow
example the vendor specific classes are derived from Process, ProcessDef and WfHandler.
This is illustrated in Figure 1. The classes that belong to the Livelink product family are pre-
fixed with “LL” and the ones belonging to the Staffware product family with “SW”.

Submission to EuroPLoP 2000 2

3URFHVV

<<Interface>>
3URFHVV'HI

<<Interface>>
:I+DQGOHU

<<Interface>>

LLProcess SWProcess LLWfHandler SWWfHandlerLLProcessDef SWProcessDef

Figure 1: Workflow Domain Classes

The next step would normally be the usage of the typical Abstract Factory pattern by model-
ing an abstract factory that declares the needed interface for the construction of workflow
products.

���������	�
��	
����	��

CreateProcess() : Process
CreateProcessDef() : ProcessDef
CreateWfHandler() : WfHandler

<<Interface>>

Figure 2: Abstract Workflow Factory

After that two concrete factories would be derived from AbstractWorkflowFactory: one that
handles the Livelink and one that handles the Staffware product family. This is illustrated be-
low.

$EVWUDFW:RUNIORZ)DFWRU\

CreateProcess() : Process
CreateProcessDef() : ProcessDef
CreateWfHandler() : WfHandler

<<Interface>>

LLWorkflowFactory

CreateProcess() : Process
CreateProcessDef() : ProcessDef
CreateWfHandler() : WfHandler

SWWorkflowFactory

CreateProcess() : Proces s
CreateProcessDef() : ProcessDef
CreateWfHandler() : WfHandler

Figure 3: Workflow Factory Hierarchy

The concrete factories would override the construction methods and return either a Livelink or
a Staffware specific product. LLWorkflowFactory would, for example, return a pointer to a
LLProcess object if a client calls its CreateProcess() method. Usually there is only one con-
crete factory available per product family. The actual concrete factory is often requested from
a static GetFactory() method, which is declared in the AbstractWorkflowFactory class. By in-
stantiating a different concrete factory within this method, the whole product family can be
exchanged at run time.1

The above solution can also be applied to the organisation domain, where abstractions like
Department, Company and Division are used. As the mentioned application must be able to
work in different banking environments, an abstract organisation factory would be introduced.
Further, the concrete factories UBSOrgFactory and CSOrgFactory would be derived from Ab-
stractOrgFactory. The former would construct specific products for the UBS, and the latter for
the CreditSuisse environment.

1 Refer to Gamma E. e.a. (1995), p. 87ff. and p. 107ff. for further information

Submission to EuroPLoP 2000 3

UBSOrgFactory

CreateCompany() : Company
CreateDepartment() : Department
CreateDivision() : Division

CSOrgFactory

CreateCompany() : Company
CreateDepartment() : Department
CreateDivision() : Division

AbstractOrgFactory

CreateCompany() : Company
CreateDepartment() : Department
CreateDivision() : Division

<<Interface>>

Figure 4: Organisation Factory Hierarchy

�������
Use the Generic Factory pattern when2

• a system should be independent of how its products are created, composed and repre-
sented.

• a family of related product objects is designed to be used together and you need to en-
force this constraint.

• you develop a framework where black box reuse shall be achieved by offering a generic
object construction and delivery mechanism.

If any point is a driving goal in you application design, you should consider the usage of Ge-
neric Factory.

����
��
There are several disadvantages of the classical Abstract Factory approach. For each new
product family, a new concrete factory must be derived and implemented. This is quite time
consuming if there is no mechanism that automatically generates the relevant source code
skeleton. If a forward engineering approach is used in the software development process, it
would also be necessary to generate the relevant classes within the design model. Further-
more, the static GetFactory() method of the corresponding abstract factory needs to be
changed. Although the reuse of design is achieved by using the Abstract Factory pattern, the
overall implementation time of this pattern does negatively influence software productivity.

��
�����
To avoid the discussed problem above, it would be advantageous to have a factory class that
can be configured at run time and extended dynamically. This would result in a blackbox im-
plementation of the Abstract Factory pattern and so combine the typically intended reuse of
design ideas with the reuse of code. Moreover, for every new product family a black box fac-
tory could be instantiated and configured with the product family objects. Further, the only
code that would have to be actually written would be the one configuring the factory. This
would lead to less implementation effort and thus to increased software productivity.

The Generic Factory pattern describes a way to design an object construction and delivery
mechanism that can be used as a generic base service. Thereby it overcomes the disadvan-
tages associated with the Abstract Factory pattern. It also shows how normal objects can be-
come singletons at run time and how objects can be specified via an abstract or a concrete
product id. Moreover, Generic Factory enables the grouping of products to product families.

2 s. Gamma, E. e.a. (1995), p. 88 for the first two points

Submission to EuroPLoP 2000 4

Generic Factory is a composite pattern as it does combine several patterns to solve its ad-
dressed design problem.3 Generic Factory is composed of the Singleton, the Prototype4, the
Product Trader5, the Factory Method6 and the Property List pattern. During the explanation of
this pattern the different base patterns will be mentioned where appropriate. In the next para-
graph, the concept of the Generic Factory pattern will be introduced. After that it will be ex-
plained by applying it to the above mentioned example.

A FactoryTrader, as the central component in the Generic Factory pattern, allows clients to
communicate with Factories indirectly. It decouples clients from Factories and therefore al-
lows the interchange of the construction mechanism.

Factories handle the construction of ConcreteProducts and offer a registry service for Conre-
teProducts. Moreover, Factories enable the grouping of ConcreteProducts to ProductFami-
lies.

ConcreteProduct declares an interface for the prototype operations which are needed to cre-
ate products.

ProductFamily acts as an container for ConcreteProducts belonging to a ProductFamily. It is
used by Factories to group ConcreteProducts.

Additional information about ConcreteProducts such as singleton characteristics are stored in
ConcreteProductInfo objects and used by Factories during the construction process.

���������

&RQFUHWH3URGXFW

Clone()

3URGXFW)DPLO\

PFID : String

&RQFUHWH3URGXFW,QIR

CPID : String

isSingleton()
11

+cProductInfo

1

+cProduct

1
KDV

CPID : String

1*

+pFamily

1

CPID : String

+cProductInfo

* KDV

APID : String

1*
+pFamily 1

APID : String
+cProduct

*

KDV

)DFWRU\

CreateProduct()
CanBuild()
RegisterProductFamily()
RegisterAbstractProduct()
RegisterConcreteProduct()
SetDefaultFamily()

PFID : String

1

*

+factory 1

PFID : String

+pFamily*

KDV

)DFWRU\7UDGHU

CreateProduct()
GetFactory()
Register()
Unregister()
Get()

factoryName : String

1
*

+fBroker

1

factoryName : String

+factory

*
XVHV

Client
XVHV

Figure 5: Generic Factory Structure

������������������
����!"�
���#
Within the Generic Factory pattern the FactoryTrader is the central point of communication. It
is responsible for administrating all Factories and for fulfilling requests of clients by delivering

3 s. Riehle, D. (1995) for composite patterns
4 s. Gamma, E. e.a. (1995), p. 117ff.
5 s. Martin, Riehle, Buschmann (eds), Product Trader
6 s. Gamma, E. e.a. (1995), p. 107ff.

Submission to EuroPLoP 2000 5

the demanded objects resp. ConcreteProducts. Normally, clients only communicate with the
FactoryTrader. Therefore, the FactoryTrader acts as a trader between clients and factories
when it receives the clients’ requests and then tries to find a factory that can satisfy them by
returning the ConcreteProducts. This concept conceals the existence of factories from clients
and so eases the substitution of the construction mechanism. For example, it would also be
possible that the FactoryTrader directly communicates with the requested ConcreteProducts.7

After a Factory has returned the demanded ConcreteProduct, the FactoryTrader forwards it to
the client. As stated above, the FactoryTrader needs to know all available Factories. For this
reason, it must be able to register and unregister Factories. Further, after all Factories have
been registered, the FactoryTrader has to be able to ask Factories, which ConcreteProducts
can be constructed by them. The Factories must contain a service which tells the Factory-
Trader if a demanded ConcreteProduct can be built. The Factories must also offer the actual
construction mechanism.

�	��
FactoryTrader
������������
�
• is repsonsible for the

delivery of products.
• Administrates factories.
• shields clients from the

used construction
mechanism.

���	���	
���
Client
Factory

��������������
�
����!#
A Factory has to be initialized with the ConcreteProducts that it should be able to construct.
Therefore a Factory must also provide a registration service like the FactoryTrader. Never-
theless, this will differ from the FactoryTrader registry service because a black box factory
should behave like a typical ConcreteFactory of the Abstract Factory pattern. Thus a Factory
should be able to handle product families. This results in the necessary ability to group Con-
creteProducts to product families and to associate ConcreteProducts with their AbstractPro-
ducts8. So a Factory must supply appropriate operations which, for example, take the identifi-
cation of an AbstractProduct as a parameter and execute the needed internal steps to ad-
ministrate them. Afterwards, the ConcreteProducts can be registered. Thereby the identifica-
tion of the ConcreteProduct, the ConcreteProduct itself and the identification of the corre-
sponding AbstractProduct must be supplied to enable the association of the ConcreteProduct
with the AbstractProduct.

�	��
Factory
������������
�
• administrates Concre-

teProducts.
• creates ConcretePro-

ducts
• administrates Product-

Families

���	���	
���
FactoryTrader
ProductFamily
ConcreteProductInfo
ConreteProduct

������������������������������#
Often a product family can contain one or more ConcreteProducts that must behave like Sin-
gletons9. Singletons have to be treated differently by Factories. Usually, ConcreteFactories
would know which ConcreteProducts are Singletons and implement the corresponding create

7 reflects a special implementation of the Prototype pattern
8 the reason for relating ConcreteProducts with their AbstractProducts will be discussed later
9 s. Gamma, E. e.a. (1995), p. 127ff.

Submission to EuroPLoP 2000 6

methods appropriately. A black box factory doesn’t know what kind of objects it will have to
handle. Thus, a different solution has to be found. One solution would be to integrate the sin-
gleton specific code in each ConcreteProduct that must be a Singleton in the given context.
The construction process is integrated into each ConcreteProduct. Therefore ConcretePro-
ducts act as Prototypes since they are able to clone themselves. In the simplest case, each
ConcreteProduct must provide a method which creates a clone of the ConcreteProduct and
returns it to the caller. Therefore each ConcreteProduct must implement the Prototype pattern
besides its problem related interface, i.e. Process, ProcessDef or WfHandler. This is illus-
trated in Figure 6. In the case of a Singleton this method would not return a clone, rather a
pointer to itself. Thus, there would be only one instance of the ConcreteProduct. This ap-
proach has one drawback: It couples the singleton characteristic with the ConreteProduct. In
another context, it is possible, however, that the ConcreteProduct is not a Singleton. In such a
situation the clone method would have to be modified. To avoid this and enable that any Con-
creteProduct can become a Singleton at run time, the Factory needs to be designed in an-
other way. During the registration of a ConcreteProduct at a Factory, it has to be stated if the
ConcreteProduct shall be treated as a Singleton. If the FactoryTrader then requests a Con-
creteProduct, the Factory checks to see if the ConcreteProduct is a Singleton, and either re-
turns a clone or a pointer to the registered ConcreteProduct.

�	��
ConcreteProduct
������������
�
• declares an interface

for the needed Proto-
type operations.

���	���	
���
Factory
ConcreteProduct

3URFHVV

<<Interface>>
3URFHVV'HI

<<Interface>>
:I+DQGOHU

<<Interface>>

LLProcess SWProcess LLWfHandlerSWWfHandlerLLProcessDefSWProcessDef

&RQFUHWH3URGXFW

Clone()

Figure 6: Interface Implementations

�
��������������
Figure 7 shows the used design patterns in Generic Factory besides Factory Method and
Property List. Factory Method is part of the Singleton and the Prototype pattern and Property
List is used as a parameter object in several methods.10

10 s. Figure 5 for the method signatures.

Submission to EuroPLoP 2000 7

LLWfHandler

)DFWRU\

CreateProduct()
CanBuild()
RegisterProductFamily()
RegisterAbstractProduct()
RegisterConcreteProduct()
SetDefaultFamily()

&RQFUHWH3URGXFW

Clone()
Construct()

3URGXFW)DPLO\

PFID : String

PFID : String

1

*

+factory 1

PFID : String

+pFamily*

KDV

&RQFUHWH3URGXFW,QIR

CPID : String

isSingleton()
11

+cProductInfo

1

+cProduct

1
KDV

CPID : String

1*

+pFamily

1

CPID : String

+cProductInfo

* KDV

APID : String

1*
+pFamily 1

APID : String
+cProduct

*

KDV

Client

)DFWRU\7UDGHU

Cre ate Pro duct ()
GetFactory()
Regi ster()
Unregister()
Get()

factoryName : String

1
*

+fBroker

1

factoryName : String

+factory

*
XVHV

XVHV

LLProcess

���������	�
����������	�
�

��������
��������

����
���
����
���

Figure 7: Design Patterns used in Generic Factory

��������
��
����������
��
���#
It has been pointed out that a Generic Factory must administrate product families and their
related ConcreteProducts. To achieve this administration a Generic Factory creates a Pro-
ductFamily object for each registered product family. A ProductFamily is identified by its
unique identification. If a ConcreteProduct is registered a ConcreteProductInfo object (CPInfo)
is constructed and initialized with the ID of the ConcreteProduct (CPID). Furthermore the
ConcreteProduct is attached to the CPInfo object. Afterwards the CPInfo object is associated
to its corresponding ProductFamily object. Thereby it is associated with its concrete and ab-
stract product id (APID). This allows that a ConcreteProduct can be requested either by a
CPID or an APID.

�	��
ProductFamily
������������
�
• acts as an container for

ConcreteProducts be-
longing to a Product-
Family

���	���	
���
Factory
ConcreteProductInfo

�	��
ConcreteProductInfo
������������
�
• holds additional infor-

mation, which is
needed for the con-
struction mechanism

���	���	
���
Factory
ProductFamily
ConcreteProduct

Submission to EuroPLoP 2000 8

	!�
����

Client :
FactoryTrader

 : Factory :
ConcreteProductInfo

 :
ConcreteProduct

1: Get()

2: CreateProduct(ParameterListIfc)

3: CanBuild(ParameterListIfc)

5: CreateProduct(ParameterListIfc)
6: isSingleton()

7: Construct()

ask all
factories

if it is a
singleton
return a
reference

otherwise call
prototype
method

4: look if Product can be build

Figure 8: Request for a Concrete Product

 :
GFConfigurator

 : Factory :
FactoryTrader

 : PropertyList : LLWfHandler :
LLProcessDef

 : LLProcess

1: new

2: RegisterProductFamily(String)

3: RegisterAbstractProduct(String, String)

4: RegisterAbstractProduct(String, String)

5: RegisterAbstractProduct(String, String)

6: new

9: new

12: new

8: RegisterConcreteProduct(ParameterListIfc)

11: RegisterConcreteProduct(ParameterListIfc)

14: RegisterConcreteProduct(ParameterListIfc)

7: create and init PropertyList

10: create and init PropertyList

13: create and init PropertyList

16: Get()

17: Register(Factory, String)

LiveLink

Process

ProcessDef

WfHandler

LLProcess

LLProcessDef

LLWfHandler

WfFactory

15: SetDefaultFamily(String)

Figure 9: Configuration and registration of a factory

Submission to EuroPLoP 2000 9

�����$������
The Generic Factory pattern has the following benefits and liabilities:

%�������
1.
����
�� 	��� ����	
��� �����
��� ����
���
���� �������� ��� ������
�� �����
���Thus Ge-

neric Factory also offers a solution to the design problem addressed by the Abstract
Factory pattern, but in a generic way.

2. ���������	�
�����	������	�������������	����
������	��������
�������������The Fac-
tory can be subclassed to supply more specific services. If clients would like to work with
a concrete Factory, they can request it from the FactoryTrader. Afterwards clients can
downcast to the concrete interface and use the declared services.

3. ������	
���� ����������� ��� ��
� �	���
�� ����� ����
��� ����
���
���� ����	����
������ as they don’t have to implement a new factory for a new product family. They can
create a new instance of Factory instead and configure it with their ConcreteProducts.

��� ������	����	�������	
��������	�����������������
��The construction mechanism is a
base service which can be integrated in the framework core and reused in several appli-
cations.

��� ����	�������
���	������������ ��
�����There is no need to implement the Singleton
pattern. Instead ConcreteProducts can just be registered as Singletons at a Factory.

��� ���������	�
���� �	�� ��� ����� ����� 	�
��	
��	���!�By using a data driven approach
Generic Factory can be configured automatically. A generic configurator could, for exam-
ple, read all needed information from a xml file and instantiate and initialize the factories.

&�
��
�����
1. ����
�����
�"�����
� ��	����� ���
� ��������
�
��� "��
�
���� ��
���	���� This may

sound as a disadvantage, but normally they are anyhow implemented to increase per-
formance. If a prototype method is offered by an object a client only needs to request an
instance from the corresponding factory once and can then use the prototype method to
create clones.

���
����
�����
�
	����	������
�����	��
�!�To actually work with the ConcreteProducts, cli-
ents have to downcast to the expected interface. GenericFactory doesn’t assure that the
expected object is returned as a totally different ConcreteProduct could have been regis-
tered under the given CPID or APID.

���
����
�������
������#���������
����
��������
����	��������� �	������ ��
���!�There is
no possibility to ask a ConcreteProduct if it is a Singleton. Singleton characteristics of a
ConcreteProduct have to be documented somewhere else, for example in the design-
model.

���
����
���	����
�����	
��	 	���
�
�������
���
�����������!�For example, it is possible
for clients to create a clone of a Singleton. Thus every application developer needs to
follow the construction rules to help avoiding unexpected behaviours.

��� $���
�������
�����
�"�����
�!�If there is no garbage collection, application developers
must agree upon a policy on how to handle the deletion of ConcreteProducts. Imagine
following example policy: Factories delete their registered ConcreteProducts and clients
delete the ConcreteProducts they requested. If a ConcreteProduct is a Singleton, clients
mustn’t delete it.

���
���
���
��������	������	����
����������������	�
��Usually every time a client re-
quests a ConcreteProduct the FactoryTrader loops through all Factories to find the one,
which can deliver the ConcreteProduct. This could lead to a performance bottleneck.
Therefore a smart FactoryTrader could be introduced. A smart FactoryTrader remembers,
which Factories can deliver which ConcreteProducts. Thus if a client requests a Concre-
teProduct, that has already been delivered the FactoryTrader directly knows, which Fac-
tory to use. This increases performance a lot. Furthermore, a client can request a Con-
creteProduct only once and then use the Prototype methods.

'��
�����
����

Submission to EuroPLoP 2000 10

���������$���������������������#
The communication between clients and the FactoryTrader hasn’t been covered yet. Clients
need to specify the requested ConcreteProduct. However sometimes clients really don’t and
actually shouldn’t know, which ConcreteProduct they need. In other cases clients might need
a ConcreteProduct, which is derived from an AbstractProduct of a specific product family.
Again imagine the Motivation example. A client could request the Process object of the
Livelink product family in one case and in the other case the Process object of the Staffware
product family. How can these considerations be realized in a flexible manner? The Factory-
Trader could offer a method, which provides parameters for all of the explained cases. A cli-
ent would then supply the needed parameters and initialize the ones which are not needed to
a default value. For the above example a client would call the method of the FactoryTrader in
the following manner.

Signature: FactoryTrader::CreateProduct(String AbstractProductID,
String ConcreteProductID,
String ProductFamily)

Process rProcess=rFactoryTrader.CreateProduct(“Process”,
””,
”Livelink-Wf-Product-Family”);

The above approach is not flexible as every time a new parameter is needed, the method sig-
nature and therefore the class interface must be changed. This can lead to major problems as
clients maybe need to be recompiled and relinked.11 Furthermore, clients need to adapt their
method invocation. These problems can be avoided by applying the PropertyList pattern12.
This pattern is a flexible solution to allow the evolution of classes without the modification of
their interfaces. The PropertyList pattern describes how a list of name/value pairs can be
used to hold the parameters of a method. Thus instead of supplying all parameters explicitely
a client just supplies a PropertyList object, which contains the parameters. A refactored solu-
tion of the above example is illustrated below:

PropertyList rPropertyList = new PropertyList();
rPropertyList.Add(“APID”,”Process”);
rPropertyList.Add(“PFID”,”Livelink-Wf-Product-Family”);

Process rProcess=rFactoryTrader.CreateProduct(pPropertyList);

Further, parameters can now be added in a very flexible manner by simply using the Add()
method of the PropertyList object.

��
��
��(���
���

In this section the configuration of the Generic Factory implementation for the mentioned ex-
ample will be illustrated. Please note that the supplied code samples are only given to show
the necessary steps.

In order to handle product families of different domains it is useful to use one Factory per do-
main. Let’s take a look at the workflow domain. There, two product families are present and
therefore need to be registered at the Factory object:
Factory rWfFactory = new Factory();
// Register Product Families
rWfFactory.RegisterProductFamily(“LLFamily”);
rWfFactory.RegisterProductFamily(“SWFamily”);

11 for example, if C++ is used
12 s. Sommerlad P. & Rüedi M. (1998)

Submission to EuroPLoP 2000 11

After registering the product families their abstract members need to be attached :
// Register AbstractProduct Familiy Members
rWfFactory.RegisterAbstractProduct(“Process”,“LLFamily”);
rWfFactory.RegisterAbstractProduct(“ProcessDef”,“LLFamily”);
rWfFactory.RegisterAbstractProduct(“WfHandler”,“LLFamily”);

rWfFactory.RegisterAbstractProduct(“Process”,“SWFamily”);
rWfFactory.RegisterAbstractProduct(“ProcessDef”,“SWFamily”);
rWfFactory.RegisterAbstractProduct(“WfHandler”,“SWFamily”);

Then the ConcreteProducts must be registered at the Factory and associated to their Pro-
ductFamilies and AbstractProducts. For example, the LLProcess object has to be attached to
the Livelink family and to the abstract Process object. Moreover, it has to be stated, if the
ConcreteProduct shall be treated as a Singleton. Please recall that the registered Concre-
teProducts are Prototypes and therefore must be instantiated.
// Register ConcreteProducts

PropertyList rPropertyList = new PropertyList();

// Register LLProcess

Process rProcess = new LLProcess();
rPropertyList.Clear();
rPropertyList.Add(“CPID”,”LLProcess”);
rPropertyList.Add(“APID”,”Process”);
rPropertyList.Add(“ProductFamily”,”LLFamily”);
rPropertyList.Add(“Singleton”,”false”);

// Register LLProcessDef

ProcessDef rProcessDef = new LLProcessDef();
rPropertyList.Clear();
rPropertyList.Add(“CPID”,”LLProcessDef”);
rPropertyList.Add(“APID”,”ProcessDef”);
rPropertyList.Add(“ProductFamily”,”LLFamily”);
rPropertyList.Add(“Singleton”,”false”);

rWfFactory.RegisterConcreteProduct(rProcessDef,rPropertyList);

// Register LLWfHandler

WfHandler rWfHandler = new LLWfHandler();
rPropertyList.Clear();
rPropertyList.Add(“CPID”,”LLWfHandler”);
rPropertyList.Add(“APID”,”WfHandler”);
rPropertyList.Add(“ProductFamily”,”LLFamily”);
rPropertyList.Add(“Singleton”,”true”);

rWfFactory.RegisterConcreteProduct(rProcessDef,rPropertyList);

// Register the necessary ConcreteProducts of the SWFamily
…

There might occure a problem during the registration of ConcreteProducts. RegisterConcre-
teProduct() has been called several times and each time with a different type, although pa-
rameter types need to be unique. Therefore, all ConcreteProducts must implement the same
interface. In this case the top level interface is ConcreteProduct. ConcreteProduct declares
the needed Prototype interface. The method Clone() and Construct() must be overriden in
every ConcreteProduct.

Submission to EuroPLoP 2000 12

Thus during the registration process the pointers to the ConcreteProducts are upcasted to
ConcreteProduct. This also forces clients to downcast to the interface of the requested type:
PropertyList rPropertyList = new PropertyList();
rPropertyList.Add(“APID”,”Process”);
rPropertyList.Add(“PFID”,”Livelink-Wf-Product-Family”);

Process rProcess=(Process)rFactoryTrader.CreateProduct(pPropertyList);

After the ConreteProducts have been registered the default ProductFamily needs to be speci-
fied, as the Factory has to know, which ConcreteProduct to deliver, if only an APID is supplied
as a parameter.

// Set default Product-Family
rFactory.SetDefaultFamily(“LLFamily”);

Now the Factory is operational and can be attached to the FactoryTrader. Thereby a unique
ID has to be supplied.

// Attach WfFactory to the FactoryTrader
FactoryTrader rFactoryTrader=FactoryTrader::Get();
rFactoryTrader.Register(rWfFactory,”WorkflowFactory”);

The above configuration concept lacks flexibility as the Generic Factory implementation has
to be configured by writing source code. This might lead to a situation where the configuration
task influences software productivity negatively, either. Therefore it would be much better to
use a data driven approach. By specifying the different Product Families, Abstract Products
and Concrete Products in a configuration file no additional source code has to be written, if
new Product Families shall be supported. This requires a generic configuration algorithm
which can parse the configuration file and perform the configuration task. The instantiation of
the Concrete Product prototypes can raise a problem, if the implementation language does
not support run time type information (RTTI). To achieve the desired flexibility the implemen-
tation language must offer a way to create instances of a class at run time as the configura-
tion details aren’t available until the configuration file is read. In JAVA the above problem can
easily be solved by using the Class object. The Class object offers the static method for-
Name() that takes the name of a class as a parameter and returns a reference to it, if it could
be loaded. From the referenced Class object new instances can be requested by calling the
method newInstance(). This feature can be used to create the required prototypes. The next
example shows a configuration file that configures the Generic Factory implementation in or-
der to support the LiveLink and Staffware Product Families. It has been written using the eX-
tensible Markup Language (XML)13. The corresponding Document Type Definition (DTD) is
illustrated in Figure 11.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Factories SYSTEM "GenericFactory.dtd">
<Factories>

<Factory id="WfFactory">
<DefaultFamily familyRef="LLWfFamily"/>
<ProductFamily id="LLWfFamily">

<AbstractProduct>ProcessDef</AbstractProduct>
<AbstractProduct>Process</AbstractProduct>
<AbstractProduct>WfHandler</AbstractProduct>
<ConcreteProduct id="LLProcessDef"

className="com.systor.cmt.workflow.livelink.LLProcessDef"
isSingleton="false"/>

<ConcreteProduct id="LLProcess"
className="com.systor.cmt.workflow.livelink.LLProcess"
isSingleton="false"/>

<ConcreteProduct id="LLWfHandler"
className="com.systor.cmt.workflow.livelink.LLWfHandler"

13 s. W3C (2000)

Submission to EuroPLoP 2000 13

isSingleton="true"/>
</ProductFamily>
<ProductFamily id="SWWfFamily">

<AbstractProduct>ProcessDef</AbstractProduct>
<AbstractProduct>Process</AbstractProduct>
<AbstractProduct>WfHandler</AbstractProduct>
<ConcreteProduct id="SWProcessDef"

className="com.systor.cmt.workflow.staffware.SWProcessDef"
isSingleton="false"/>

<ConcreteProduct id="SWProcess"
className="com.systor.cmt.workflow.staffware.SWProcess"
isSingleton="false"/>

<ConcreteProduct id="SWWfHandler"
className="com.systor.cmt.workflow.staffware.SWWfHandler"
isSingleton="true"/>

</ProductFamily>
</Factory>

</Factories>

Figure 10: XML configuration file

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Factories (Factory*)>
<!ELEMENT Factory (DefaultFamily,ProductFamily+)>
<!ATTLIST Factory id ID #REQUIRED>
<!ELEMENT DefaultFamily EMPTY>
<!ATTLIST DefaultFamily familyRef IDREF #REQUIRED>
<!ELEMENT ProductFamily (AbstractProduct+,ConcreteProduct+)>
<!ATTLIST ProductFamily id ID #REQUIRED>
<!ELEMENT AbstractProduct (#PCDATA)>
<!ELEMENT ConcreteProduct EMPTY>
<!ATTLIST ConcreteProduct id ID #REQUIRED

className CDATA #REQUIRED
isSingleton (true|false) "false">

Figure 11: XML-DTD of configuration file

)�����*���
WISE: WISE allows the integration of different workflow management systems (wms) in het-
erogenous and complex system environments. In order to deal with several wms in a flexible
manner, the Generic Factory pattern has been used to develop a generic infrastructure for the
creation and the delivery of wms specific objects. WISE has been used to develop a credit
risk management system for a leading Swiss bank.

RETO: RETO is a retail platform, that has also been developed for a Swiss bank. There, a
similar approach as Generic Factory has been used to administrate concrete factories from
which clients could request concrete products.

(�

�����
������
• ���
�	�
��	�
���

Generic Factory is an extension of the Abstract Factory pattern as it is applyable in the
same context but in a generic way. Abstract Factory uses inheritance where Generic
Factory uses composition.

• "�����
�%�	���
Generic Factory is closely related to Product Trader14 as it also allows the specification
and configuration of ConcreteProducts. Further, both patterns decouple clients from the
concrete construction mechanism. Nevertheless, Generic Factory focuses on product
families where Product Trader concentrates on single objects. Moreover, Generic Factory
addresses the construction of Singletons also.

14 s. Martin, Riehle, Buschmann (eds), Product Trader

Submission to EuroPLoP 2000 14

• �	�
����
�	��
Factory Chain15 also uses composition to extend functionality, but on factory level. Con-
crete factories are linked together in a chain. If a factory cannot handle a request it for-
wards it to its successor. Factory Chain is a combination of Abstract Factory and Chain of
Responsibility16.

• �	�
����&�
���
Factory Method also keeps a client of an object independent of its creation. This pattern
focuses on individual objects and not on product families. Nevertheless it is a base pat-
tern of higher level patterns, like Abstract Factory, Singleton and Prototype. Generic
Factory uses the Factory Method pattern to retrieve the FactoryTrader object.

• "��
�
���
Prototype uses Factory Method to solve its design problem. There is no differentiation
between the object and its creator. They are actually the same object. Generic Factory
uses the Prototype pattern to enable the creation of Concrete Products.

• '�� ��
��
The Singleton pattern is used to make sure that there is only one instance of a class
which can be accessed globally. Access is typically realized by offering a static Factory
Method. In the Generic Factory pattern the FactoryTrader is a Singleton.

��+���
���������

I wish to thank my shepherd Wolfgang Berger for his useful remarks and my colleagues
Arif Chughtai, Martin Fabini, Thomas Neumann and Ralf Steck from Systor AG for their
time and help.

%��
����
��!

Gamma, E. e.a. (1995): Design Patterns, Elements of Reusable Ob-
ject-Oriented Software-Design, Addison-
Wesley, Bonn 1995

Martin, Riehle, Buschmann (eds) (1998): Pattern Languages of Program Design 3,
Addison-Wesley, 1998

Riehle, D. (1997): Composite Design Patterns, OOPSLA 1997,
ACM Press, p. 218-228, 1997

Sommerlad P. & Rüedi M. (1998): Do-it-yourself Reflection, IFA Informatik,
Zürich, Submitted to EuroPLoP´98

Kriha, W. (1997): Frameworking, Strukturen und Verbindungen
in einem Framework, SYSTOR AG, Basel
1997

W3C (2000): eXtensible Markup Language, W3C
Architecture Domain,http://www.w3.org/XML/

Copyright © 2000 Oliver Vogel. All Rights Reserved.

15 s. Kriha, W. (1997), p. 97ff (unfortunately not yet published)
16 s. Gamma, E. e.a. (1995), p. 223ff.

