
Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

A Collection of Patterns for Object-Oriented Databases

Author: Manfred Lange
IT Consultant
Hewlett-Packard
NSL (Network Support Lab)
Herrenberger Strasse 130
71034 Boeblingen
Germany
Manfred_Lange@hp.com

Revision: 2.12
Last saved: 6/6/00 1:14 AM

Abstract
Object-oriented database systems (ODBMS) have been around for a while. Still, it does not appear that
they have found widespread use. Many applications are still developed base on relational database systems.
For these, pattern languages have been developed over a couple of years1.

For object-oriented database systems however dedicated papers describing related patterns are rare. This
paper tries to fill the gap. At least to some extend, as it does not provide a complete set of patterns, but only
a collection.

All patterns presented here have been successfully applied to different projects, having built a solid
backbone for high availability solutions.

Introduction

In this paper, I use the following categories for the patterns for object-oriented database applications:
- Transaction Management
- Cluster Management
- Session Management
- Query Management
- Miscellaneous

The following picture gives an overview of the patterns described in this paper:

1 [Keller 1995] and [Keller 1998]

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

Scoped Transaction

Transaction
Management

Error Handling

Encapsulate
Manufacturer

Supplied Class

Miscellaneous

Association
Traversal with Path

Specification

Association
Traversal with Roles

Association
Traversal with

Predicates

Query
Management

Session

Session Cache

Query Session

Session
Management

Object Lookup Map

Cluster Table

Cluster
Management

The patterns described in this paper are derived from our work in the area of database access layers. We
typically do not allow any client, who typically is another software component, to directly access the
database system. There are two reasons for this: first, we do not want to distribute database system or
product related code throughout the complete system. Second, we want to be able to arbitrarily change the
database schema without being forced to also change all clients. Although I do not want to discuss
advantages or disadvantages of one programming language versus others, we have decided that for a back
end database access layer, e.g. a component running on a (web-)server, C++ is the best choice regarding
resource consumption during runtime. This is the reason why some of the patterns presented here will not
necessarily work with other programming languages.

Thispaper assumes that you have decided to use an object-oriented database system (see appendix for a
lightweight introduction to object-oriented databases). However, you can find material for making this
decision in [Coldewey].

In closing this introduction, I would like to issue one warning: If you implement an application using an
object-oriented database system, do not simply apply all of the patterns described in this paper. The better
approach is to use always the database features first. Only if they do no fit your requirements, you should
select a pattern from this paper.

Scoped Transaction

Motivation
Providing a consistent view to the objects in the database is the main reason for transactions. However, in
conjunction with clustering2 a transaction can also help to implement efficient caching strategies.
Transactions should be kept as short as possible as they determine the lifetime of locks. In order to keep the
throughput high, locks should be released as soon as possible.
In addition, once a transaction has begun, it should not be left uncommitted or aborted for a longer period
of time.
Furthermore, for a failsafe operation every call for starting a transaction should be paired with a commit or
an abort (rollback) of the very transaction.
In short: How do you guarantee that you close an opened transaction again in all circumstances?

Forces
- All started transactions must be either committed or aborted (rolled back).
- No client must hold locks longer than necessary, because

2 Clustering is a technique of physically locating related objects together, so that they can be efficiently
retrieved from the database especially when they are located on the same page on the disk.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

- Throughput of the database must be maximized. (number of transactions per second)
- The number of concurrent users must be maximized.

- Transactions should be easy to handle, e.g. automatically commit, or roll back a transaction.
- Transactions must be finished within a predefined timeframe, e.g. within 30 seconds.

Solution
Use a construct of your programming language that allows you to tie the lifetime of the transaction to the
lifetime of a scope or a code block.
If a class is the construct you have chosen, then you would create a new instance at the beginning of the
block. When the block is left, the instance is destroyed. The destructor of the class tries to commit the
transaction, and if this did not work, the destructor would abort the transaction.

Consequences
1. All transactions are handled with pairs of either Start()-Commit() or Start()-Abort(). This ensures that

no transaction is left open.
2. As no transaction is left open, no lock is left on any object in the database.
3. Transactions are easy to handle, as you only define a local variable. When it goes out of scope it

automatically either commits or aborts the transaction.
4. Given 1 and 2, Scoped Locking contributes to a higher throughput and availability of the database

system

Implementation Issues
For C++ this means introducing a class for handling transactions. The class should have at least the
following interface.

class Transaction {
public:
 int Start();
 int Commit();
 int Abort(); // same as rollback
 bool IsActive(); // returns true when started, but not committed
 // or aborted.
private:
 bool m_bIsActive;
 ooTrans3 m_objyTrans;
};

When a client wants to start a transaction, it creates an instance of class Transaction on the stack. Then the
client has to call Start() on the object. Finally, after all database calls have been done, Commit() has to be
called. This is not the tricky part.
The interesting part starts, when an error occurs, e.g. signaled by throwing an exception, the scope is
somehow left, but not the normal way. However, the language guarantees that the destructor of local
objects will be called. The destructor can therefore check, whether the transaction has been properly
committed, and if not, the transaction can be aborted.
The technique with a scoped object is described for C++ in [Stroustrup].

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).4

3 This is the class of the ODBMS. However, there is no support for automatically committing or aborting
transactions.
4 At present, all these applications are not available standalone. All of them are part of service or support
offerings.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

Related Patterns
Scoped Locking: This pattern uses the same technique for automatically releasing lock on shared resources.

Object Lookup Map

Motivation
Objects have an identity. Among other things, the identity is used to refer to an object.
However, objects are frequently identified by their location, e.g. in C++ the memory location, the address
of an object is used for identifying the object. Many object databases such as Objectivity/DB and
ObjectStore use their object identifier to determine the physical location of an object.
This alone does not do any harm. However, ODBMS’s may support clustering. In this case, it is possible
that an object might be moved from one storage place in the database to a different storage place. In
consequence, this means that the object identifier changes its value, as it now refers to a different storage
place in the database.
In this situation it becomes necessary to be able to look up an object not only by the object identifier of the
database, but to have a constant identifier that does not change, even when the object changes its location.
One might think, that the database system supplied naming service might be sufficient for solving this
problem. Each object would be stored with an additional name. This feature is meant for attributing a
relatively small subset of all objects with a name. This kind of object is typically called a root object. They
are normally used to start the navigational access to the database. However, the naming feature does not
scale well, if you want to access ALL objects in this way.
In short: How do you locate objects with a unique identifier, if the database systems naming feature is not
fast enough for accessing ALL object in this way?

Forces
- You need to identify objects independent their location.
- You need a fast way to locate an object
- Given a complex object network, navigational access is too slow.
- Using navigational access, objects might be moved because of clustering, before the actual access can

be done.
- You need to name ALL objects in the database.
- You need a consistent view of the database.

Solution
Implement a scalable map for mapping unique identifiers to database locations.

Consequences
1. Using the map, the unique identifier is sufficient to find an object in the database, even if the database

specific object identifier has changed.
2. Locating object using the unique identifier is easy and fast. It is slower than using the database specific

object identifier, as the map must be read. However, once the map has been cached, the overhead is
very limited, and might be acceptable for your application.

3. It is not necessary to use navigational access to locate an object. For complex object networks, the use
of the object map is much faster.

4. Concurrency issues because of moved objects are reduced (but not eliminated), if the object map is
used instead of complex navigational access.

5. ALL objects are uniquely identifiable.

Implementation Issues
You must keep the map consistent. This means that under all circumstances, the entries in the map must
reflect the actual location of the objects.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

You must update the map, when an object is created, when an object is moved to a different location in the
database and when an object is deleted.
In addition, the client must make provisions for ensuring a consistent view on that map. It might be OK for
one client to “see” the object at location y. This might be completely wrong for a second client requiring
the object to be at location z.
The reason is that starting a transaction determines the view of a client on the database contents. This view
must be consistent5. A different client may update the database contents thus potentially also moving or
deleting objects, which the first client has already accessed6. In this scenario, the two clients may “see” the
very same object at two different locations in the database7.
The implementation must have a very thorough look at all the places that deal with locking and updating
the map. In particular, in a transactional system many race conditions can render the system unusable or
unstable. Using synchronization objects such as critical sections or mutexes or database locks is required,
but must be reviewed.
The best thing to do is to implement such a lookup map in a class of its own. This helps isolating and
testing the race conditions.
Depending on the database product, you may achieve consistency of the map with provisions on the client
side or the server side. If the product supports triggers on the server side you may want to considers this the
best solution.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Smart pointers: A smart pointer can be used a reference to an object, without requiring the object to stay at
the same location. So a smart pointer has from this perspectives the same benefits as the Object Lookup
Map. The difference is that smart pointers typically are not automatically updated when a different process
changes the location of an object.
Smart pointer could be automatically be updated by database triggers. However, the addition of smart
pointers would mean, that you could not use database features, that require to pass references to their calls.
Smart pointers are not real pointers. They simulate real pointers. For a more detailed discussion on smart
pointers in C++ see [Meyers].

Clustering Table

Motivation
As opposed to relational database systems, a client application can explicitly tell the ODBMS where it
should physically locate a particular object. This is true to a more or less extent depending on the particular
database product. The set of rules that determines which objects are located together is called clustering.
Why would you want to do that? There are at two major reasons for this: performance and lock granularity.
I will now look a little more into the details for each of them.
Typically, you do not access single objects in the database. Normally you access sets of objects of different
classes, which are associated with each other thus building a net of associated objects. If a client accesses
any single one of these objects, there is a high probability that the same client will access some of the other
objects as well. Therefore, it makes sense to locate these objects closely together, e.g. on one page of the

5 Consistency is not required for all application. However, the programmer’s life will not become easier
with inconsistent views, as it requires additional effort, if you want to make updates to the database
contents.
6 If a different client inserts new objects, this is not an issue. The first client does not care for these objects,
as they will never be part of the view of the current transaction.
7 If your database system does not support read locks for objects with an update lock for a different client,
then this is not an issue, either.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

storage subsystem. If the client accesses one of the objects, the page is loaded with it all the other objects
stored on that page.
The other reason for clustering is lock granularity. ODBMS’s can be distinguished in two major groups
depending on the server component type they have: products using an object server, and products
employing an page server. In the former case, the server transmits only one object at a time, whereas a page
server always transmits a storage page, potentially containing more than one object. 8

Accessing an object means, that the client has to acquire a lock. The lock is managed by a server
component called the lock server9. If the client accesses many objects, then for the object server type of
ODBMS, this would mean many calls to the lock server in order to acquire a lock for each of the objects
being accessed. For page servers, the system provides one lock per page10. Locking one object means, not
only will the object be locked, but the page will be locked and therefore all other objects on the same page.
Both techniques result in a performance increase, if you do clustering properly. You will encounter
performance problems, if you do not take care of the clustering.
In short: How do you cluster your objects in the database?

Forces
- You want to have a single place in the code with all information about how objects are being clustered.
- You want to be able to experiment with different cluster strategies, e.g. when you do not know yet the

access patterns of the clients.
- You want the clients to be unaware of the actual clustering strategy.
- You want to optimize performance by locating related objects close together.
- You want to optimize concurrency by NOT locating objects close together. If objects are located close

together, they might be protected by just one lock instead of several.

Solution
Implement a Clustering Table.
Using the Clustering Table, you do not have to write code at all places where you instantiate new objects in
order to provide a clustering hint. Instead, you ask the Clustering Table and he will be responsible for
determining the correct location.
You can have many different implementations for your Clustering Table.
The Clustering Table can be table driven. In this case, you have to set up a table, be it hard coded or
external. The table contains entries, which in turn maps from some information to a clustering hint. This
table is typically very short, approximately between 10 and 20 entries, depending on the solution at hand.
The following is an extract of such a table:
Object Type 1 Object Type 2 Move Type Move Target
Device Interface DEEP Device
Interface Device DEEP Device
Network Device DEEP Network
IPAddress Device SHALLOW Device
…
Some explanations for this sample: “Object Type 1” is on the from-side of the association, “Object Type 2”
is on the to-side of the association. The “Move Type” indicates, whether an object should propagate moves
to other associated objects (DEEP), or of not (SHALLOW). Finally the column “Move Target” indicates
which object will stay at its current location and hence the other object is being moved.

8 Database system theory also describes servers that can adapt and automatically switch between serving
single objects and serving pages. Performance wise the page servers do have a higher performance.
However, if you have a high concurrency requirement, you are still free to cluster only one object per page.
The result is a behavior that is (almost) identical to an object server.
9 Depending on the database product, this may be part of the server component, the client runtime
environment, or it could also be a separate process. Objectivity has a separate process that runs on the
server.
10 Objectivity uses the aggregate “container”. A lock is acquired on a per-container basis. However, I left
out this product detail for simplicity reasons.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

A second approach would be that you use the Strategy Pattern for implementing the clustering strategy.

Clustering Strategy
Saying, you can use a table or the strategy pattern for implementing a clustering strategy, is not sufficient.
The interesting part lies in what information do you use for determining the clustering strategy.
In a first best guess, you should look at your problem domain. Determine that most important abstraction
(class) in your problem domain. You can have more than one class that fits this rule. Put the objects of
these classes in the middle. Arrange (locate, cluster) all the remaining objects around them.
Next, you run your application. Profile your application and find out how many lock conflicts occur and
how much disk-I/O your system needs. See also the consequences section about this item.
You can select the objects, the associations, or a combination of both for your clustering strategy.
For instance, you may give each association in your database schema a weight. Starting with some primary
objects (or root objects), you can traverse the associations, and then using the weight of the association to
determine, where a newly created object is stored. In this case, your table would contain entries with the
class, the association weight, and the clustering hint, e.g. information about whether the newly created
object should be clustered close to the object at the other end of the association.

Performance versus Concurrency
Looking at clustering you have to find a compromise between performance and concurrency. If you put
objects too close together they might get locked all at the same time. This results in a good performance,
but in a poor concurrency behavior, because clients access will be serialized.
On the other hand you can cluster your objects, so that each object has its dedicated lock. In this case the
performance will be not that good. However, concurrency will be much higher, as more clients can work in
parallel on the objects.
It is your task during the design or implementation phase to discover objects that represent a potential
bottleneck.
The best result will usually be a compromise between performance and concurrency. A good mean to find
the best compromise is to use the Clustering Table in order to experiment with different clustering
strategies.

Consequences
1. All clustering related code is located at one place. You are not required to write clustering code at all

places where a clustering hint is required.
2. As all clustering code is located at one single place it is easy to change the clustering strategy.

You have to change the implementation of only one class in order to use a different clustering strategy.
In the case of using the strategy pattern for implementing the Clustering Table, the following
consequence applies: The implementation of only a distinct subset of classes has to be changed in
order to use a different clustering strategy.

3. Play around with different clustering strategies. Employ performance tests in order to find out, whether
you increased the number of lock conflicts or disk I/O. The former is an indicator for putting too many
objects into one lock aggregate. In other words, the object density is too high. The latter indicates, that
you should use fewer lock aggregates. You have to find the right balance between lock conflicts and
disk I/O.

4. You can implement all clients without them even knowing what a Clustering Table is.
5. During development of your system, you should have different clustering strategies at hand. Once in a

while, simply switch from one clustering strategy to a different one. This will result in a different
runtime behavior, caused by different race conditions and lock conflicts. The benefit is, that this helps
you to find bugs in the client implementation during development of your system.

6. If objects are clustered close together, e.g. in same container or on the same page, performance will be
better, as less I/O operations are required.

7. If objects have each their own dedicated lock, concurrency will be optimized, as more database clients
will be able to access the objects in parallel.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

Implementation Issues
The most difficult part is to determine the set of information, which the clustering manager takes as an
input for determining the clustering hint. However, there is no golden rule for this. It heavily depends on
the individual problem domain and the application at hand.
Generally, you can always start with a table driven implementation. This is a very simple approach. The
table typically takes between 10 and 20 entries with maybe half a dozen columns. Once the table gets larger
than that, or if you want to use complex algorithms, e.g. examining and traversing a couple of existing
persistent objects, to determine the clustering hint, you should consider using the strategy pattern for your
implementation.
However, I do not have any experience with the latter, as up until now, the tables have always been very
short.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Strategy Pattern, GOF. The strategy pattern can be used to implement the clustering strategy. In that
respect, the strategy pattern is a complementary pattern.

Session Cache

Motivation
In order to access the database, each client has to set up a connection. A client in this context is every
thread that needs access to the database. In this paper, I call the database connection a session. Creating a
session and destroying a session is an expensive operation. The client side runtime has to allocate and
initialize caches. Furthermore, it has to set up connections to the object server or the page server as well as
to the lock server.
In short: How do you reduce the overhead for establishing and ending database connections (sessions)?

Forces
- Establishing database connections is expensive
- Ending database connections is expensive
- Clients frequently request and abandon database connections

Solution
Introduce a Session Cache. The Session Cache is responsible for maintaining a pool of sessions.
If a client tries to connect to the database, the Session Cache looks in the pool of available sessions first. If
a session is available, the Session Cache takes the session from the pool and returns it to the client.
If no such session is available, the Session Cache creates a new session and returns the newly created
session.
Once the client is done with using a session, it can return the session to the Session Cache, who in turn puts
it back into the pool of available sessions.
An important issue is, how the session will be deleted. Under normal circumstances it is sufficient to define
an upper limit of sessions, e.g. 10 sessions. Once the limit has been reached and another session has been
added to the pool, the number of sessions that exceeds the limit will be deleted.
If resource consumption should be even lower, then the following strategy might be better. For each session
in the pool, a timestamp of its last use is stored. Then, when a predefined timelimit has been reached,
without the session being reused, the session will get deleted. The advantage is that after the timeout
period, the pool might be empty and therefore unused session do not exists. Consequently they don’ t
consume any resources at all.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

During shutdown, the session cache is also responsible for closing any open session and also deleting all
sessions in the pool. The session cache itself is typically a static variable, or a variable global to the
module, if you like.

Consequences
1. If a client request can be satisfied from the session pool, the overhead of establishing the database

connection and ending the database connection is significantly reduced. The time for locating a
suitable session is neglectible compared to the time required to establish a new database connection.

2. If the client abandons a database connection, it is simply added to the pool of database connections. As
it is not actually destroyed the client does not encounter a performance hit.

3. Only if the pool is exhausted, creating a new session induces overhead on the client request.
4. Maintaining a session pool may lead to significantly higher resource consumption, e.g. memory, as all

the caches and connections are kept, even if no client is connected to the database. This however can
be eliminated, if the Session Cache uses a time-out period for detecting inactivity. If this happens, the
Session Cache can then destroy some or all unused sessions. However, this again increases the latency
for establishing data connections and the complexity of the Session Cache.

Implementation Issues
When you implement the Session Cache, you must make sure that the current state of the sessions is
properly maintained. It is mandatory, that you never assign a session, which is currently in use, to a client.
If you do so, it may work quite good for some time (even days), but eventually, the race conditions will
lead to unexpected results.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Prototype. Exemplar. In both cases, a single instance of a class is created. Then, whenever another instance
is required, it is simply a copy of the already existing instance. Session cache takes this a little further by
having a predefined number of prototypes or exemplars, namely the sessions.

Session

Motivation
When a client opens a database connection, the client has to specify a number of attributes for the database
connection11. Among them the client indicates the timeout, the kind of concurrency, the size of the client
side cache, and so on. Further more, all these settings are also bound to an actual database connection,
represented typically by a class, which the ODBMS’s manufacturer provides12.
Looking at the potentially big number of attributes required, it becomes obvious that it is easy to choose
wrong settings.
Additionally, you will not need all the attributes for all database application you develop. For instance,
some database systems allow for different kind of concurrency, e.g. dirty reads. Depending on your
application, this might be an option or not. In order to simplify the interface presented to the client, you
may want to encapsulate it in a separate class.

11 Usually the database system provides default values in case a client does not want to explicitly specify
the values.
12 Objectivity’s name for that class is ooContext.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

In short: How do you simplify using a database connection while at the same time providing support for
exactly the required connection attributes?

Forces
- You want to simplify the interface to the database.
- You want to choose a subset of attributes describing a database connection. The client must only able

to modify this subset.
- You want to use a different set of default values for the database connections.
- You want to explicitly associate states to the database connection in order to use strict state transitions.

Solution
Encapsulate the database connection in a class Session.
Session also has an embedded member of the manufacturer provided class representing the database
connection. Here is an example for Objectivity (ooContext is the manufacturer provided class):

-m_pObjyContext : ooContext*

Session ooContext

Consequences
1. The clients “see” only the interface you want them to see.
2. The Session class can override the complete set of default values.
3. The Session class can use arbitrary states and state transitions.

Implementation Issues
You have to notice the general implementation issues, as described in “Encapsulate Manufacturer Supplied
Class”.
Additionally, you have to ensure the proper implementation of the state transitions.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Encapsulate Manufacturer Provided Class, Session Cache, Decorator, Adaptor.

Query Session

Motivation
Up to here, I have described scenarios, in which the clients use explicit transactions. The code for accessing
the database looks typically like this:

IDatabase ptrDatabase;
PtrDatabase->BeginTransaction();
// some calls for reading and updating object go here
PtrDatabase->CommitTransaction();

I call this “explicit transactions”, as the code contains explicit statements for marking the transaction
boundaries. Opposed to this, implementing clients can become very easy, if you can avoid use of explicit
transactions.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

Working with databases, you often make queries. A set of objects is the result of such a query. Typically,
you do not want to change the result set to change while you are working with it. The database system
guarantees this within transaction boundaries.
In short: How do you provide non-mutable result sets, if your client does not use explicit transactions?

Forces
- The client does not use explicit transactions.
- The result set must not change while the client uses it (no additions, no removals).
- Result sets of queries are valid only within transaction boundaries.
- The client mixes query/result set related database calls with other (normal) database calls.

Solution
Associate a query session with each result set.
For clients not using explicit transactions, each database call will implicitly cause the database access layer
to supply the call with a valid transaction. This does not work for query related calls.
The transaction for a query is started, when the database access layer detects that the client wants to execute
a query. A new session, the query session, is then assigned to a result set object. Once the result set object
goes out of scope, the transaction is committed (should always work, as this is always a read-only
transaction). In addition the query session is abandoned, or given back to the Session Cache, who in turn
adds it to the pool of available query sessions.
When a client mixes normal calls to the database (causing implicit transactions) with calls related to the
query or the result set, the database access layer automatically switches between the normal session and the
query session.
A small side note: The solution is similar to the scoped transaction in the following respect: in both cases
one object is bound to the lifetime of another object. The same way the scoped transaction is bound to a
block or scope, the Query Session is bound to the lifetime of the result set.

Consequences
1. The Query Session uses dedicated transaction object. This is distinct from the transaction object, that is

implicitly used for clients, which do not indicate their transaction boundaries.
2. The Query Session provides the context in which a result set is valid. The view to the database is

consistent. The Query Session is used as long as the client holds at least one reference to the result set.
As the transaction is not committed unless the result set goes out of scope the result set does not
change until then.

3. The Query Session can survive implicit transactions, as it is completely transparent to the client.
4. The implementation of the database access layer becomes more complex, as you have to add the code

for detecting queries and switching between normal sessions and query sessions.
5. You can apply filters and sort criteria to the result set without modifying the raw result set. By

removing the filters and the sort criteria, you will revert the result set to its initial contents.

Implementation Issues
I have already discussed the problems associated with the Session and the Session Cache. Introducing the
Query Session, the Session Cache may potentially become more complicated, as the Session Cache has
now to administer two different types of sessions. The logic for determining which type of session is
needed, has to be implemented somewhere, e.g. in the Session Cache
You can reduce this additional complexity by employing two different pools for sessions. One pool
contains only “normal” sessions and the other pool contains the Query Sessions.
One aspect simplifies the implementation of Query Session: All Query Sessions are typically read-only
transactions.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Encapsulate Manufacturer Supplied Class, Session Cache.

Association Traversal with Path Specification

Motivation
An object usually fulfills its responsibility in collaboration with other objects and hardly stands on its own.
A device management application may use the following problem domain classes for representing a 19”
racks, interconnect devices and power supplies13.

Rack InterconnectDevice

PowerSupply

We now want to retrieve all power supplies, be it for a rack or for an interconnect device.
The first approach would be to use a typed iterator on the complete database. This will work in all cases.
However, in most cases this will be too slow, as the database system would check every object in the
database. The database system has to determine whether each object is an instance of class PowerSupply or
of a class derived from PowerSupply.
A better approach would be to use a navigational access to determine all Rack objects. Then you could
traverse the association from the Rack objects to the associated PowerSupply objects. The result would be
all PowerSupply objects that provide power to a Rack. The next step would be to traverse the association
from each Rack object to the associated PowerSupply objects. The latter would be added to the
intermediate result set, leading to the requested result set.
I call a traversal from one class to another class a path. In the given example, I used two different paths:
Rack – PowerSupply and Rack – InterconnectDevice – PowerSupply. Both paths describe how to collect
the PowerSupply objects.
In short: How do you effectively collect objects for a result set, if multiple association traversals are
possible?

Forces
- Not all of the object-oriented database systems provide a query language as powerful as SQL14.
- Depending on the query, the path for traversing is different. So the solution must provide for a

parameter on how to specify the path.

13 Note: I use these classes for illustration purposes only. To the best of my knowledge, they are not used in
any of Hewlett-Packards.
14 OQL (Object Query Language) is the equivalent to SQL in the object-oriented database world.
Unfortunately, the OQL implementations differ from one vendor to the next, and they do not provide
constructs for traversal in all cases.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

Solution
The solution depends on how persistence is achieved in the database system. The solution presented here
assumes that persistence is implemented through inheritance, that means: all persistence-capable classes are
derived directly or indirectly from a common base class.
A new class PersistentObject is introduced and derived from the common base class, e.g. ooObj15, for
persistence capable classes. All other classes to be persistence capable are derived from the class
PersisentObject.
The class PersistentObject carries a member function called TraverseAssoc(). This function has two
parameters, one for the path specifications, and one parameter is passed by ref and is a container that takes
all objects that are found during the traversal. The path specification can be a simple table such as the
following one:

ClassID RoleID BCollectObjects
ManagementAgent Manages False
Device N/a True

Consequences
Again, as for all database related stuff, the most important thing is to take all possible race conditions into
account. For instance, what happens when starting traversing, the start object is moved to a different
location? Should the traversal restart? Or is it possible to continue?
There is no general answer to this issue. It – again – depends on the used database product. The solution I
am using simply restarts the traversal. At present we do not have a performance issue here.
When traversing from one object to another, it is possible to detect, whether the start object or any of the
other object has been moved or updated. If this happens, the code bails out and restarts the traversal.

Implementation Issues
Traversing associations can potentially affect many objects, hundreds, thousands or even more. When
accessing one of the objects for the first time, it could well be that several versions of that object are
available. Several versions can exist, when multiple clients access the database. In this case, each client
might have different, yet still consistent view of the database. In this situation the software developer must
determine whether to use the version as at the time when the traversal started of the version of as when the
object is accessed for the first time.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Strategy [GOF], Association Traversal with Roles, Association Traversal with Predicates.

Association Traversal with Roles

Motivation
In this pattern I discuss a different scenario you may encounter, if more than one association exists between
two classes.
E.g. a 19” rack may provide power to a set of interconnect devices, such as a router, which is installed in
that rack. In addition, the same rack provides cooling to the same or a different set of interconnect-devices.

15 Objectivity uses ooObj as the common base class for all persistence capable classes.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

Rack InterconnectDevice

ProvidesCooling

ProvidesPower

If you want to retrieve all interconnect devices, the result set depends on the association you traverse. In
order to retrieve only interconnect devices for which the rack provides power, you only want to traverse the
association named ProvidesPower.
In this case it is obviously not sufficient to just specify the path Rack – InterconnectDevice.
In short: How do you specify roles when traversing associations?

Forces
- Two classes are related to each other with more than one association.
- You want to be able to retrieve both sets on only one association or the join of more than one

association.

Solution
Specify roles when traversing associations.
You traverse associations using iterators. Compared to Association Traversal with Path Specification you
also supply the iterator with information about the roles for each association.
Given the above sample, the iterator needs information about whether to follow the association
“ProvidesPower” or the assocation “ProvidesCooling”. The Rack has both roles, but one may only be
requested.
The following source code shows how an iterator is set up depending on the role:

<source code to be added>

Consequences
1. Two classes may be related to each other with more than association.
2. Iteration and association traversal requires you to also specify roles, if more than one association exists

between two classes.
3. The implementation of the iterator becomes more complex, as it has to consider roles in addition to the

path specifications.

Implementation Issues
You should use an enumeration for specifying roles. I recommend to use one enumeration per class.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Association Traversal with Path Specification, Association Traversal with Predicates.

Association Traversal with Predicates

Motivation
In addition to Association Traversal with Path Specification or Association Traversal with Roles you may
want to restrict the result set to objects that also pass a filter, e.g. you want to retrieve only interconnect
devices of a particular type.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

In short: How do you restrict a result set while traversing associations?

Forces
- You want not only to traverse associations but restrict the result set to objects that do suffice certain

criteria

Solution
Combine predicates with paths or roles.
Again you implement an iterator for traversing associations. In addition to a path specification, a role or
both, you provide the iterator with a set of predicates.

Consequences
1. You can restrict the result set with a set of predicates.
2. The implementation of iterators becomes more complex, as additional information is required. This

issue can be minimized by using default values, in case you do not want to restrict the result set.

Implementation Issues
You should avoid to pass the predicates as strings, e.g. “Manufacturer = Cisco AND IOSVersion >= 11.0” .
Instead use an array such as the following:
AND/OR Name Boolean Op Value

Manufacturer = Cisco
AND IOSVersion >= 11.0
Note, that the first row does not contain an entry in the first column.
This table can become as long as required.
If the underlying database system provides a query language, I recommend to use it. However, you should
still avoid to pass strings from the client to the database access layer, as otherwise you will have to also
implement a parser for that string (or rely on the database system).
You definitely have to implement a parser, if the underlying database system does not support a query
language, or if the query language you expose at the interface is different to the one of the database.
ODMG-93 defines a query language named “Object Query Language” (OQL). For more information, see
[Cattell 1996].

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Association Traversal with Path Specification, Association Traversal with Roles

Error Handling

Motivation
Some software components, including the database system I am using, use a UNIX-style signaling
mechanism for error handling.
Using C++ as programming language, the software developer may want to use C++ exception handling for
error handling. In this case the best solution would be, if the error handler could directly throw an
exception. Unfortunately, the software component may not be written with exceptions in mind. Then
variables and objects created on the heap or on the stack may not get deleted properly. Or even worse:
database locks or synchronization objects may not get released, leading to a deadlock situation.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

A straight forward solution would be to check the return value of each call into the software component and
if the value indicates an error the client code would throw the exception.
In short: How do you map UNIX-style signaling mechnism to C++-like exceptions?

Forces
- The client wants to use C++ exceptions for error handling.
- The software component uses a UNIX-like signaling mechanism for indicating errors.
- The software component does not work correctly, when an exception is thrown in the error handler.

Solution
In the error handler store all necessary error information at a well know place, that is accessibly to the
client of the software component.
Implement a class ErrorCheck that in its constructor cleans the error information of the client.
In the destructor, the object checks whether an error has been signaled, and if so, it throws an exception.

Consequences
1. The benefit of the solution is, that if a new version of the software component becomes available, the

implementation of the error handler can then throw exceptions directly. The client code does not need
to be modified in any way.

2. Another not so obvious benefit is that for debugging purposes, the destructor of the ErrorCheck class
can be modified in a way, that errors are simulated. In this setup, the error handling code of the client
can be verified. This is a very powerful technique for testing and debugging multithreaded database
applications.

Implementation Issues
Some programming languages do not execute the destructor immediately, when the reference to an object
goes out of scope. Here you have to employ different language features.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Scoped locking,
Scoped transaction.

Encapsulate Manufacturer Supplied Class

Motivation
As typical approach for specializing manufacturer supplied classes you would normally simply introduce a
new class derived from the existing class.
However, manufacturer supplied classes are typically implemented in runtime libraries. Normally you do
not get the source code for these classes. The runtime library might allocate a separate heap. Furthermore,
you have to note that the destructor is a class method whereas the destructor is an object method. This can
lead to the effect that for creating an object of a manufacturer supplied class memory is allocated from one
heap, whereas the destructor tries to free the memory on a different heap. This happens in particular, if the
destructor is virtual.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

In short: How do you avoid side effects, if you want to specialize a manufacturer supplied class?

Forces
- You do not have the source code for the manufacturer supplied class.
- Both, creation and destruction of instances of the manufacturer supplied class must be done on the

same heap.
- The manufacturer supplied class may or may not have a v-table.
- The interface of the manufacturer supplied class is too complex.

Solution
Instead of deriving from a manufacturer supplied, embed a member of that class in the encapsulating class.
E.g. assume that the ODBMS you use has a class named d_transaction. If you want to specialize this class,
your encapsulating class should look like this:

class Transaction {
public:
 // public members
private:
 // Attributes
 d_transaction m_nativeTransaction;
};

Consequences
1. Encapsulating the class instead of deriving a new class avoids possible side effects with regards to

memory management.
2. You can have a complete new set of public member functions.
3. If you want to replace your current ODBMS by a ODBMS of a different vendor, the change becomes

much easier, as only the encapsulating classes have to be changed16.

Implementation Issues
In most cases, only a subset of the original functionality will be required.
Many of the needed functionality can be achieved by simply forwarding a call to the implementation of the
manufacturer supplied class.

Known Uses
Multiple Hewlett-Packard network support applications use this pattern, e.g. AutoCollect, Network
Documentation Tool (NDT).

Related Patterns
Adapter, Bridge.

Appendix

A Lightweight Introduction to Object-Oriented Database Systems
Although object-oriented database management systems (OODBMS) have been around for a while, they
still lack widespread usage. Some industries, such as the telecom industries, is using OODBMS on a
regular basis also for mission critical systems. There is however, resistance in the more traditional branches

16 This is not necessarily true, if some of your code relies on a specific ODBMS specific feature, e.g.
MROW, which is a concurrency model available only with Objectivity.

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

such as banking or insurance. The latter still have – in part caused by legal requirements – a preference for
relational (or even hierarchical) databases.
In essence an OODBMS provides means for making objects persistent. The idea is that the software
developer does not need to learn an additional language (such as the DDL17 part of SQL18) for defining the
schema of the database, but can use the programming language (e.g. C++ or Java) instead.
Apart from that OODBMS have a lot in common with relational database management systems (RDBMS).
The things they have in common are transactions, queries, iterators, etc.
But be aware, although the differences seem to be small, their impact is tremendous. I found examples
there were almost impossible to implement with a RDBMS, as it used more than 16 tables in a join and the
RDBMS at hand had a limit at 16 tables. Opposed to that it was pretty simple to implement the same design
with the OODBMS.

A Short Sample
Given an arbitrary problem domain, you might want to have the flexibility to add attributes, e.g. scalar
values, arrays or groups of attributes, to any object you like without changing the schema of the database.
Using UML the following picture shows one possible design:

Problem Domain Class Attribute

Scalar Value Array GroupOfAttributes

Using an ODBMS19 with C++ binding the schema would be defined as:

class ProblemDomainClass {
// other stuff left out for brevity
private:
 ooRef(Attribute) m_attributes[];
};

class Attribute {
 // other stuff left out for brevity
};

class ScalarValue : public Attribute {
 // other stuff left out for brevity
};

class Array : public Attribute {
 // other stuff left out for brevity
private:
 ooRef(ScalarValue) m_members[];
}

17 DDL = Data Definition Language
18 SQL = Structured Query Language
19 In this paper, I am using the DDL of Objectivity. For more information on objectivity, see
http://www.objectivity.com

Manfred Lange: “A Collection of Patterns for Object-Oriented Databases”
Submission for preliminary conference proceedings of EuroPLoP 2000.
June 6, 2000.

Copyright 2000 by Manfred Lange, all rights reserved.
Permission is granted to make copies for the purpose of EuroPLoP 2000.

class GroupOfAttributes : Attribute {
 // other stuff left out for brevity
private:
 ooRef(Attribute) m_groupedAttributes;
};

Literature
Catell 1996 Rick Catell, Editor: “Object Database Management Systems” , Morgan Kaufmann

Publishers, ISBN 1-55860-396-4
Coldewey Jens Coldewey: “Choosing Database Technology” ,

http://www.coldewey.com/publikationen/database.html
GOF “Design Patterns – Elements of Reusable Object-Oriented Software” , Addison-

Wesley, ISBN 0-201-633612
Keller 1998 Wolfgang Keller: “Object/Relational Access Layers” , Proceeding of EuroPLoP

1998
Keller 1995 Wolfgang Keller: http://www.objectarchitects.de/ObjectArchitects/orpatterns
Meyers Scott Meyers: “More Effective C++: 35 New Ways to Improve Your Programs

and Designs” , Addison-Wesley, 1996, ISBN 0-201-63371-X
Stroustrup Bjarne Stroustrup: The C++ Programming Language, Addison Wesley, 1997,

ISBN 0-201-889544

Acknowledgements
I would like to thank my shepherd Jens Coldewey for his very useful comments. It was not only fun, but I
also learned a lot during the shepherding.
Thanks go also to the people from Micram AG, Bochum, for their help, especially Raimund Backes and
Törk Hansen.

