
Process Patterns for Small Systems UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 1

Process Patterns for Small Systems
Charles Weir and James Noble 1997-2000.

These patterns are part of an ongoing project to capture and document techniques for
the design and construction of systems that must function under tight memory
constraints. Some patterns from this project will be published in book form in the
Addison-Wesley Software Patterns Series in 2000.

This paper contains the following patterns:

• Thinking Small
• Memory Budget

The full chapter will i nclude several additional patterns (and a proper bibliography!);
the first pattern includes an overview of all the patterns that will be included in final
chapter, including these additional patterns.

Related patterns have appeared in several conferences, including:

High-level and Process Patterns from the Memory Protection Society. James Noble
and Charles Weir. In Pattern Languages of Program Design 4. Neil Harrison, Brian
Foote and Hans Rohnert, editors. Addison-Wesley, 1999.

Patterns for Small Machines. James Noble and Charles Weir. Proceedings of the
European Conference on Pattern Languages of Program Design, Irsee, Germany.
Universitäts Verlag Konstanz. 1998

Secondary Storage. Proceedings of the European Conference on Pattern Languages of
Program Design, Irsee, Germany. Universitäts Verlag Konstanz. 1999

We’d like to thank all those who have reviewed, comment on, or shepherded these
patterns, in particular, many thanks are due to Linda Rising, our Europlop 2000
shepherd, for his comments on this draft.

Further information about this project can be found on the web at:
http://www.cix.co.uk/~cweir/Book/DraftChapters.htm

Major Technique: Thinking Small UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 2

 Major Technique: Thinking Small
Version 04/12/99 16:59 - 40

A.k.a Small methodology, Real programming.

How should you approach a small system?

• You’re developing a system that will be memory-constrained.

• There are many competing constraints to satisfy

• If different developers take different views on which things to optimise, they
will produce an inconsistent system that satisfies none of the constraints.

You're working on a project and you suspect there will be resource limitations in the
target system. Perhaps you’ve done some back-of-the-envelope calculations and
they’ve indicated that memory requirements may be a problem; perhaps managing the
program’s memory consumption is an explicit part of the project’s brief; or perhaps
you’ve worked on a similar project before, and that project had problems managing
memory use.

For example, the developers of the ‘Super-spy 007’ version for the Strap-it-On wrist-
mounted computer face a system with only 200 Kb of RAM and 2 Mb ROM. How
are they to adjudicate the demands of the voice recognition software, the vocabularies
and the software-based radio, to make it a secret agent's dream toy? Should they store
the vocabularies in ROM to save RAM space, or keep them in RAM to allow them to
change from Russian to Arabic on the fly? What, in short, is important in their
system, and what is less so?

In many projects it’s clear from the outset that the development team will have to
spend at least some time and effort satisfying the system’s memory limitations. You
have to cut your coat to fit your cloth. Yet if the team spends lots of effort optimising
everything to work in very limited memory, they'll waste a lot of time and can produce
a product that could have been much better. Worse still , the resulting system may fail
because they have been optimising the wrong thing. You can minimise RAM memory
use, for example, but your system will fail nonetheless if it needs twice the ROM space
that the hardware supports. Optimising memory can reduce time-performance,
usabili ty, and even the overall capacity of the system.

When building any system, you have to moderate the demands of different components
in the system against each other. This is a big and highly sensitive task. Software
programmers tend to take their design decisions seriously, so capricious decisions can
cause friction or worse within a development team. Design decisions about the trade-
offs based on just individual designers' foibles, on gut feel or on who shouts loudest
will l ead neither to consistent successful designs, nor to a harmonious development.

To make matters worse, while some decisions can be deferred until l ater in the project,
some decisions are pervasive — by providing a framework for later decisions they need
to affect every component and every line of the system you are building. Strategic
decisions about memory use are reflected in the design of the interfaces between
components, in the trade-off s between main memory, ROM, and secondary storage,
and in the support for fault tolerance and error handling, to give just three examples.

Therefore: Think Small! Make the memory constraints a priority for the entire project.

First draw up a crude MEMORY BUDGET of the likely available resources in each of the
categories above. If the figures are flexible (for example, if the system is to run on

Major Technique: Thinking Small UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 3

standard PCs with variable configurations and other applications), then estimate or
negotiate target values with clients. Meanwhile, also estimate very approximately the
likely memory needs of the system you're developing, and identify the tensions between
the two. Determine the key design decisions that significantly impact memory use and
that set the style for the rest of the project, and ensure these decisions happen early.

Based on this analysis, identify which constraints (that is, which forces) are most vital.
It may be a constraint on one of the forms of memory in the system, but other forces–
time performance, reliabili ty, usabili ty – may be as much or more important than
memory use. Enshrine these priorities as strategy for everyone working on the project.
Ensure that absolutely everyone working on the team understands which forces are
most important in the project. Write the strategy in a document; make presentations;
preach to the choir, print the T-shirts! Indoctrinate each new developer who joins the
team afterwards with the strategy’s priorities.

Once you’ve identified your priorities, you’ ll be in a position to plan how to approach
the rest of the project. You may need a more formal MEMORY BUDGET, or perhaps
MEMORY TRACKING, or you may choose to leave MEMORY OPTIMISATION until near the
end of the project. Depending on the nature of the system, you may need to plan for
EXHAUSTION TESTING, or assign time to PLUG THE LEAKS.

For example, the developers of the ‘Super-spy 007’ decided the important priority was
the constraint on RAM, since RAM memory provided the only storage – and a reset
might then erase vital information about the Master Vill ain’s plans to destroy the
world! The next priority was the responsiveness of the user interface, to ensure quick
answers in dangerous situations. The system’s components and interfaces are designed
to minimise memory use, and then to give reasonable user response.

Consequences
Every member of the team will understand the priorities. Individual designers will be
motivated to make their own decisions knowing that the decisions will fit within the
wider context of the project. Design decisions by different teams will be consistent,
adding to the coherence of the system developed, and increasing the coordination of
the project as a whole.

You can estimate the impact of the memory constraints on project timescales, reducing
the uncertainty of the project. The initial estimates of memory needs can provide a
basis for a more formal MEMORY BUDGET for the project.

However: Deciding the memory strategy takes time and effort at an important stage of a
project, and discipline to keep to it later.

Sometimes later design decisions, functionali ty changes, or hardware modifications
may modify the strategy; this invalidates the earlier design decisions, so might leave the
project in a worse position than if individuals had taken random decisions.

� � � � � �

Implementation
There are a few basic principles that encourage thinking small , and underlie the design
of software for smaller systems::

Design small , code small You need to build in memory saving into the design as
well as into the code of individual components. The
design provides much more scope for memory saving

Major Technique: Thinking Small UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 4

than code.

Create bounds Avoid unbounded memory use. Unlimited recursion, or
algorithms without a limit on their memory use, will
almost certainly eventually cause irritating or fatal
system defects.

Design for the default case It’s always tempting to design your standard object data
structures to handle every possible case. But this
approach tends to waste memory. It’s better to design
objects so that their default data structure handles only
the simplest case, and extend the objects to handle special
cases.

Minimise li fetimes Heap- and stack- based objects cease to take up memory
when they’re deleted. You can save significant memory
by ensuring that this happens as early as possible [Auer
and Beck 1996]

An excellent way to promote Thinking Small i s to exaggerate the problem: emphasise
the smallness of the system. Make all the developers imagine the system is smaller
than it is, and encourage every team member to keep a very tight control on the
memory use. Ensure that each programmer knows which coding techniques are
eff icient in terms of memory, and which are wasteful. You can use design and code
reviews to exorcise wasteful features, habits and techniques. In this way you can
develop a culture where memory saving is a habit.

There are a number of other issues to consider when thinking small:

1. Memory Requirements vs. Memory Predictability. There are two independent,
yet closely related forces that bear upon building small systems. The most obvious is
the absolute memory requirements of the system, that is, simply the actual amount of
memory the system requires to run. But, while minimising a program’s memory
requirements can make it less likely to run out of memory, to be able to ship a system
you need to be confident that it can run successfully in a given amount of memory.
That is to say, you often need to be able to predict the systems’ actual memory
consumption in advance.

Because many patterns increase a program’s memory consumption to gain
predictabili ty (such as FIXED ALLOCATION) and others do the reverse (such as
VARIABLE ALLOCATION), you need to consider the importance of absolute requirements
against predictabili ty when drawing up your project’s memory priorities. How you do
this will depend on the project you are working on, of course. A hand-held video
game, for example, can save its high score and restart if it runs our of memory; but the
operating system for a pocket computer or, more importantly an embedded li fe-critical
system, may need to guarantee that it can operate for months or years without faili ng.

2. Implicit Strategies. Many projects work in a well-understood context, so it’s not
always necessary to make the your project’s strategy explicit. For example an MS-
Windows shrink-wrapped application can assume a total system size of more than
16Mb RAM (and around 32Mb paged memory), and at least 50Mb disk space for the
program – as we can see by studying any number of industry standard applications.

Windows developers share an unwritten understanding of the acceptable memory
requirements for a typical program. The strategy of all these Windows applications

Major Technique: Thinking Small UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 5

and the trade-offs will tend to be similar, and these are often encapsulated in the
libraries and development environments or in the standard li terature. Given this
implicit strategy it may be less necessary to define an explicit one; any programmer
who has worked on a similar project or read up the li terature will unconsciously choose
appropriate trade-offs.

Using the same implicit strategy for all applications can cause designers and
programmers to overlook lesser but still significant variations in a specific project. For
example, a Windows photograph editor will randomly access large amounts of
memory. So it may have to assume (and explicitly demand) rather more physical
memory than other applications.

3. Developers from Different Environments. Programmers and designers used to
one environment often have very great diff iculty changing to a different one. For
example, MS Windows programmers coming to the EPOC or Palm operating systems
have great diff iculty internalising the idea that programs must run indefinitely, and so
cannot afford to run out of memory. Windows CE developers have even more of a
problem with this, as the environment is superficially similar to normal Windows. If
programmers do not adapt to the new environment, the resulting code will be poor
quali ty and is unlikely to satisfy users’ needs.

� � � � � �

Specialised Patterns
The rest of this chapter introduces six further process patterns commonly used in
organising projects with limited memory. Process patterns differ from design patterns
in that they describe what you do – the process you go through – rather than the end
result.

The patterns are as follows:

Memory Budget How do you keep control in a project where memory is very
tight? Draw up a memory budget, and plan the memory use of each
component in the system.

Featurectomy How do you ensure you have an implementable set of system
requirements given the system restraints? Negotiate with the clients,
users and requirements specification teams to produce a specification
to satisfy both users needs and the system’s memory constraints.

Memory Tracking How do you find out if the implementation you’re working on
will satisfy your memory requirements? Track the memory use of each
release of the system, and ensure that every developer is aware of the
current score

Memory Optimisation How do you stop memory constraints dominating the design
process to the detriment of other requirements? Implement the system,
paying attention to memory requirements only where these have a
significant effect on the design. Once the system is working, identify
the most wasteful areas and optimise their memory use.

Plugging the Leaks How do you ensure your program recycles memory
eff iciently? Test your system for memory leakage and fix the leaks.

Exhaustion Test How do you ensure that your programs work correctly in out
of memory conditions? Use testing techniques that simulate memory
exhaustion.

Major Technique: Thinking Small UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 6

Application
Switching

Think Small

Memory BudgetFeaturectomy

Memory
Tracking

Exhaustion Test

Memory
Performance
Assessment

Plugging the
Leaks

Figure 1: Process Pattern Relationships

These patterns apply to virtually all small memory projects, from one-person
developments to vast systems involving many teams of developers scattered worldwide.
Throughout this chapter we’ ll use the phrase ‘development teams’ to mean ‘all f the
people working on the project’ . If you’re working alone, you should read this as
referring to yourself alone; if a single team, then it refers to just that team; if a large
project, it refers to all the teams.

Equally, the patterns themselves work at various levels of a project’s organisation.
Suppose you’re working on the implementation of the Strap-It-OnTM wristwatch
computer. The overall project designers (‘system architecture team’) will use each
pattern to examine the interworking of all the components in the system. Each separate
development team can use the patterns to control their implementation of their specific
component, working within the parameters and constraints defined by the system
architecture team.

Different patterns may be more applicable to different projects, however. A strongly
traditional project attempting to minimise absolute memory uses would place lots effort
into MEMORY BUDGETS and MEMORY TRACKING, while an extreme project just trying to
make sure a small program didn’ t crash too often would focus on MEMORY

PERFORMANCE ASSESSMENTS, PLUGGING THE LEAKS, and EXHAUSTION TESTING.

Known Uses
The EPOC operating system is ported to many different telephone hardware platforms;
each has a different configuration of ROM, RAM and Flash (persistent) memory. So
each environment has a different trade-off and application strategy. Some have
virtually unlimited non-persistent RAM; others (such as the Psion Series 5) use their
RAM for persistent storage so must be extremely parsimonious with it.

In each case, the memory strategy is reflected in the choice of Data Structures, in
User Interfaces, and in the use of Secondary Storage. The Psion Series 5
development used an implicit strategy, passed by word of mouth. Later ports have had
an explicit strategy documents.

Major Technique: Thinking Small UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 7

See Also
THINKING SMALL provides a starting point for a project. Most of the other patterns in
this book have trade-offs that we can evaluate only in the context of a memory strategy
for a particular project. The consequence section of each pattern describes how that
pattern affects the forces you need to consider in applying the pattern.

There are a large number of other process patterns for software development, many of
which are collected in the Pattern Languages of Program Design book series.

Memory Budget Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 8

Memory Budget Pattern
A.k.a. Memory Costings

 How do you keep control in a project where memory is very tight?

• You’re working on a project where memory is limited.

• The project will fail i f its memory requirements exceed the limits.

• You have several different components or tasks using memory

• Different individuals or teams may be responsible for each.

• Saving memory costs effort – it’s easier to let someone else do it!

• Unnecessary optimisation wastes programmer time.

You are working on a software development project, and you’ve identified that there’s
a possibili ty that memory constraints may be a significant problem. For example, the
whole Strap-It-On project is obviously limited by memory from the beginning. The
Strap-It-On needs to be as small , as cheap, and as low-powered as possible, but also
be usable by computer novices and have enough capacity to be adopted and
recommended by experts.

If you don’ t take suff icient care of the memory constraints in the system design and
implementation, bad things will happen to the project. Perhaps the system will fail to
work at all ; perhaps users will get inadequate performance or functionali ty; or perhaps
the cost of the extra memory hardware will make the software (or even the entire
project, including the hardware) unsaleable.

You could have everyone involved design and code to reduce minimise the system’s
memory requirements. This should certainly reduce the risk of the system becoming
too big, but this scorched earth approach has its own risks – if you focus solely on
keeping memory low, you’ ll have to accept trade-offs elsewhere such as poor time
performance, diff icult-to-use interfaces or large amounts of developer effort. More
importantly, some of the components of the system will provide more opportunities for
saving memory than others. There’s no point in working overtime to save a few bytes
in one component, when a minor change in another would save many times that. How
do you decide which components to concentrate on?

Making decisions about where to save memory becomes more complicated when you
also have to decide who should save memory. In projects with multiple developers or
multiple teams, everyone likes to believe that the problem they are working on is
unique, and harder than everyone else’s problem. Since it takes time and effort to
reduce memory use its only human to treat memory use as someone else’s problem and
hope that someone else will do the work. How can you share out the pain of saving
memory between the teams so that they can design their software and plan its
implementation effectively?

Therefore: Draw up a memory budget, and plan the memory use of each component in the
system.

Define memory consumption targets for the each component as part of the
specification process. Ensure that the targets are measurable [Gilb88], so the
developers will be able to check whether they’re within budget.

Memory Budget Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 9

This process is similar to the ‘costings’ process preceding any major building work.
Surveyors estimate costs and time of each part of the process, to determine the
feasibili ty and to negotiate the requirements of the customer.

Ensure that all the teams buy into the budget. Involve them in the process of deciding
the figures to budget, estimating the memory requirements and negotiating how any
deficits are spli t between the different teams. Communicate the resulting budget to all
the team members and invite their comments.

No-one can predict the future, so a memory budget will never be correct. A quick
“back of the envelope” budget will be only roughly accurate, but even a more formal
and more detailed memory budget will become less accurate as the project progresses.
For this reason, a memory budget needs to be a living document that is kept up-to-date
as the project progresses. Your should refer to it while doing MEMORY TRACKING

during development, and during the MEMORY PERFORMANCE ASSESSMENT later in the
project; revising the budget as you get better information about component’s memory
consumption, and then using further assessment to validate the new budget. You can
apply a MEMORY LIMIT to each component in the finished system to ensure that they
will never exceed their budgeted allocation. Make meeting the budget a criterion for
release of each component. Celebrate when the targets are met!

Consequences
The task of setting and negotiating the limits in the memory budget encourages all the
teams to THINK SMALL, and sets suitable parameters for the design of each component.
The budget forces the team to take an overall view of memory use, increasing the
architectural consistency of the system. Furthermore, having specific targets for
memory use greatly increases the predictability of the memory use of the resulting
program, and can also reduce the program’s absolute memory requirements.

Because developers face specific targets, they can make decisions locally where there
are trade-offs between memory use and other constraints. It’s also easy to identify
problem areas, and to see which modules are keeping their requirements reasonable, so
a budget increases programmer discipline.

However: defining, negotiating and managing the budgets requires significant programmer
effort.

Developers may be tempted to achieve their local budgets in ways that have unwanted
global side effects such as poor time performance, off- loading functionali ty to other
modules or breaking necessary encapsulation (see [Brooks 1982]). Runtime support
for testing memory budget requires hardware or operating system support.

Setting fixed memory budgets can make it more diff icult to take advantage of more
memory if it should become available, reducing the scalability of the program.

Formal memory budgets can be unpopular with both programmers and managers
because the process adds accountabili ty without direct benefits. If the final system
turns out over budget then everyone will l oose out; if it turns out under budget then the
budget will have been ‘wrong’ – so those doing the budget may loose credibili ty.

� � � � � �

Implementation
Producing an accurate memory budget (and the subsequent MEMORY TRACKING) for a
serious system is a large amount of work, and can impose a substantial overhead on
even a small project. If memory constraints aren’ t actually a problem, maintaining

Memory Budget Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 10

memory budgets expends effort that could be better spent elsewhere. In an informal
environment, with less emphasis on up-front design, developers can be actively hostile
to a full -scale formal memory budget.

For this reason, many practical memory budgets are just back-of-the envelope
calculations — a few minutes work with the team on the whiteboard, summarised as a
paragraph in the design documentation. If these simple calculations suggest that
memory will be tight then is it worth spending the effort to put together a more formal
memory budget.

1. Which resources should you budget? Most systems have various different kinds of
memory; with different constraints on each. Here are some possibili ties:

• Main memory usage, including stack memory and any system overheads. Main
memory requirements can often be analysed further, as follows.
• Global memory accessed by each component of the system.
• Heap space for each individual component or process (if components’

memory space is limited).
• Control stack space for each thread or process.
• Operating System overheads (buffers, environment space, etc).

• Read-only memory space, for systems with code and data in ROM
• Secondary storage space, such as disks or flash RAM
• Total memory usage including RAM, main memory, and any code or data

paged or swapped onto secondary storage.

It’s generally easier to budget ROM usage than RAM. ROM allocation is constant, so
you can budget a single figure for each component, and adding these figures together
will give the total ROM use for the system. In contrast, the RAM (and secondary
storage) requirements of each component will normally vary with time – unless a
component uses only FIXED ALLOCATION.

Optimising a system’s consumption of one of these resources will often be at the
expense of the others. It’s worth considering each constraint in turn, if only to rule
most of them out as problems. Often only one or two kinds of memory will be limited
enough to cause you problems, and you can concentrate on those.

2. Enforcing Budgets in Software. Some environments provide memory use monitors
or resource limits, which you can use to enforce memory budgets. The MEMORY LIMIT

pattern describes how you can implement these limits yourself. You can use memory
limits to enforce the budgeted maximum memory use of each component. Some
projects may use these limits for testing only; in other cases they may remain in the
runtime system, so that processes or applications will fail (PARTIAL FAILURE, or
complete failure) rather than exceed their budget.

3. Budgeting Variable Memory Requirements. The simplest approach to budgeting
is to estimate the worst case memory use of each component and add them together,
but this result is quite pessimistic. Some kinds of systems do require such a
conservative approach (medical and process control software, for example), but many
systems, only exercise a few components at any one time. A digital diary, for example,
will have only a few applications running concurrently. But even in less critical
applications, different components’ memory use is not independent. For example, the
peak memory use of a wireless web browser is likely to coincide with the peak memory
use of the network driver and web page cache.

Memory Budget Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 11

To deal with these dependencies, you can identify a number of worst case scenarios for
memory use, and construct a budget for the memory use of each component in each
scenario. Often, it is enough to estimate an average and a peak memory requirement
for each component and then estimate which components are likely to have peak
requirements for each worst-case scenario. You can then estimate the total memory
requirements for each scenario (buy summing the peak or average usage for each
component as appropriate) and negotiate a budget so that each scenario’s total is less
than the memory available to the system.

4. Dealing with Uncertainty. Software development in the real world is
unpredictable. Often, it turns out to be just too diff icult or too expensive to reduce
every component’s memory requirements to its budgeted limits. If there are many
components, there’ ll be a good chance that at least one will be over budget, and the
second law of thermodynamics [Flanders&Swan] says it is unlikely that components
will be correspondingly under budget.

To address this, ensure that there is some slack in the budget: a memory overdraft
fund. The amount of memory to set aside depends on how uncertain the initial
estimates are; typical overdraft allocations would be between 5% and 20% of the total
budget. The resulting budget will be more resili ent in the face of development
reali ties, increasing the overall predictability of the program’s memory use. However
you must be careful to ensure that programmers don’ t reduce their discipline and take
the overdraft for granted, reducing the integrity of the budget.

Example
The Palm Pilot has an interesting budget for its dynamic heap (used for all non-
persistent data). Because only one application runs at a time (APPLICATION

SWITCHING), the budget is the same for every application that can run on a given
machine.

The following is the Pilot’s budget for PalmOs 3.0, for any unit with more than 1
Mbyte of memory [Palm 2000]. Machines with less memory are even more
constrained.

24k System globals (screen buffer, UI
globals, database references, etc.)

32k TCP/IP stack, when active

Variable
amount

IrDA stack, "Find" window, other
system services

4k (by default) Application stack (the application
can override this amount)

up to 36k
Available for application globals,
static data, dynamic allocations,
etc.

Table 1: Palm Pilot 3.0 Memory Budget

� � � � � �

Memory Budget Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 12

Known Uses
The OS/360 project included overdrafts as part of their budgets [Brooks75]. In that
project, the managers found it important to budget for the total size of each module (to
prevent paging), and to specify the functionali ty required of each module as a part of
the budgeting process (to prevent programmers from off loading functionali ty onto
other components).

A current mobile phone project has two particular architectural challenges provided by
a hardware architecture originally defined for a very different software environment.
First, ROM is extremely limited. Based on a Memory Budget, the team devised
compression and sharing techniques, and negotiated Featurectomy with their clients.
Second, though RAM in this phone is relatively abundant, restrictions in the memory
management architecture means that each process must have a pre-allocated heap, so
every process uses the RAM allocated to it at all times. Thus the team could express
the RAM budget in terms of a single figure for each process – the maximum, or worst
case, figure.

The Palm documentation specifies a standard memory budget for all Pilot applications.
Since only one application runs at a time, this is straightforward. Most UNIXes allow
you to define a limit on the heap memory of a process, and EPOC’s C++ environment
can enforce a maximum limit on application heap sizes — these examples are
discussed further in the MEMORY LIMIT pattern.

See Also
There are three complementary approaches to developing a project with restricted
memory. The MEMORY BUDGET pattern describes how to tackle the problem up front,
by predicting limits for memory, and then implementing the software to keep within
these limits. The MEMORY TRACKING pattern gathers memory use statistics from
developers as the program is being buil t, encouraging the developers to limit the
contribution of each component. Finally, if memory problems are evident in the
resulting program, a MEMORY PERFORMANCE ASSESSMENT the developers uses post-hoc
analysis to identify memory use hot spots and remove them. Any of these approaches
can be backed up by enforcing MEMORY LIMITS at runtime.

For some kinds of programs you cannot produce a complete budget in advance, so you
may need to allocate memory coarsely between the user and the system, and then
MAKE THE USER WORRY about memory. Systems that satisfy their RAM or secondary
storage memory budget when they’re started may still gradually ‘ leak’ memory over
time, so you’ ll need to PLUG THE LEAKS as well .

The SMALL ARCHITECTURE pattern, and the other architectural patterns that follow it,
describe how you can ensure each component in a system takes responsibili ty for its
own memory use, and thus is more likely to meet its budget.

Components that use FIXED SIZE MEMORY are much easier to budget than those using
VARIABLE SIZE MEMORY.

[Gilb88] describes techniques for ‘attribute specification’ appropriate for defining the
project’s targets.

References UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 13

References
[Auer + Beck 96] Ken Auer and Kent Beck. Lazy Optimization: Patterns for Eff icient

Small talk Programming. Chapter 2 in Patterns Languages of Program Design
2. John M. Vlissides, James O. Coplien and Norm L. Kerth, editors. Addison-
Wesley, 1996.

[Brooks 82] Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1982.

[Flanders&Swan] The laws of thermodynamics. The Drop of (Another Hat). Parlophone.

[Gilb88] Principles of Software Engineering, Tom Gilb, Addison Wesley 1988, 0-201-
19246-2

[Palm 2000]]Palm Inc. Palm OS SDK Reference. Palm Inc. Santa Clara, Cali fornia. 2000.

