Process Patterns for Small Systems UNTITLED by Weir, Noble

Process Patterns for Small Systems
Charles Weir and James Noble 1997-200Q

These patterns are part of an ongang project to capture and daument techniques for
the design and construction d systems that must function under tight memory
constraints. Some patterns from this project will be published in book form in the
Addison-Wesley Software Patterns Seriesin 200Q

This paper cortains the foll owing patterns:

e Thinking Small
e Memory Budget

Thefull chapter will i nclude several additional patterns (and a proper bibliography!);
thefirst pattern includes an owverview of all the patterns that will be included in final
chapter, including these additional patterns.

Related patterns have appeared in several conferences, including:

High-level and ProcessPatterns from the Memory Protection Society. James Noble
and Charles Waeir. In Pattern Languages of Program Design4. Neil Harrison, Brian
Foate and Hans Rohrert, editors. Addson-Wesley, 1999

Patterns for Small Machines. James Noble and Charles Weir. Proceedings of the
European Conference on Pattern Languages of Program Design, Irsee Germany.
Universitéats Verlag Konstanz. 1998

Secondary Storage. Proceedings of the European Conference on Pattern Languages of
Program Design, Irsee Germany. Universitéats Verlag Konstanz. 1999

We d liketo thank all those who have reviewed, comment on, or shepherded these
patterns, in particular, many thanks are due to Linda Rising, our Europlop 2000
shepherd, for his comments onthis draft.

Further information about this project can be found onthe web at:
http://www.cix.co.uk/~cweir/Book/DraftChapters.htm

© 1999 Charles Weir, James Noble Page 1

Major Technique: Thinking Small UNTITLED by Weir, Noble

Major Technique: Thinking Small
Version 04/12/99 1659- 40

A.k.a Small methoddogy, Real programming.

How should you approach a small system?
* You'redeveoping a system that will be memory-constrained.
* There are many competing constraints to satisfy

o If different developers take diff erent views onwhich things to gptimise, they
will produce an inconsistent system that satisfies none of the constraints.

You'reworking ona project and yau suspect there will be resource limitationsin the
target system. Perhaps you’ ve dore some back-of-the-envel ope cal culations and

they’ ve ind cated that memory requirements may be a problem; perhaps managing the
program’s memory consumption is an explicit part of the project’s brief; or perhaps
you've worked ona similar project before, and that project had problems managing
memory use.

For example, the developers of the * Super-spy 007 versionfor the Strap-it-On wrist-
mounted computer face a system with orly 200Kb of RAM and2 Mb ROM. How
are they to adjudicate the demands of the voice recogrition software, the vocabularies
and the software-based radio, to make it a secret agent's dream toy? Should they store
the vocabularies in ROM to save RAM space, or ke them in RAM to allow them to
change from Rusgan to Arabic onthefly? What, in short, isimportant in their
system, and what isless ®7?

In many projectsit’s clear from the outset that the development team will have to
spend at least some time and eff ort satisfying the system’ s memory limitations. You
have to cut your coat to fit your cloth. Yet if the team spends lots of effort optimising
everything to work in very limited memory, they'll waste alot of time and can produce
aproduct that could have been much better. Worse still, the resulting system may fail
because they have been gptimising the wrongthing. Y ou can minimise RAM memory
use, for example, but your system will fail nonetheessif it neals twice the ROM space
that the hardware supports. Optimising memory can reduce time-performance,

usabili ty, and even the overall capacity of the system.

When building any system, you have to moderate the demands of different components
in the system against each aher. Thisisabig and Hghly sensitivetask. Software
programmers tend to take their design cecisions sriously, so capricious decisions can
cause friction a worse within a development team. Design decisions about the trade-
off s based onjust individual designers foibles, on gut fed or onwho shouts loudest
will [ead reither to consistent successul designs, nor to a harmonious devel opment.

To make matters worse, whil e some decisions can be deferred until | ater in the project,
some decisions are pervasive — by providing a framework for later decisions they neal
to aff ect every component and every line of the system you are building. Strategic
decisions about memory use are reflected in the design d the interfaces between
componrents, in the trade-off s between main memory, ROM, and secondary storage,
andin the support for fault tolerance and error handing, to gvejust three examples.

Therefore: Think Small! Make the memory constraints a priority for the entire project.

First draw up a crude Memory BupceT oOf the likely available resources in each o the
categaries above. If thefigures are flexible (for example, if the systemisto run on

© 1999 Charles Weir, James Noble Page 2

Major Technique: Thinking Small UNTITLED by Weir, Noble

standard PCs with variable corfigurations and aher applications), then estimate or
negatiate target values with clients. Meanwhile, also estimate very approximately the
likely memory needs of the system you're developing, and identify the tensions between
thetwo. Determinethe key design decisions that significantly impact memory use and
that set the style for the rest of the project, and ensure these decisions happen early.

Based onthis analysis, identify which constraints (that is, which forces) are most vital.
It may be a constraint on ore of the forms of memory in the system, but other forces—
time performance, reiabili ty, usability —may be as much o more important than
memory use. Enshrine these priorities as drategy for everyone working onthe project.
Ensure that absolutely everyone working onthe team understands which forces are
most important in the project. Write the strategy in a document; make presentations,
preach to the chair, print the T-shirts! Indcctrinate each new developer who joins the
team afterwards with the strategy’ s priorities.

Onceyou’ veidentified yaur priorities, you'll bein a positionto plan hav to approach
the rest of the project. You may need a more formal MEmMoRY BUDGET, or perhaps
MEMORY TRACKING, OF you may chocse to leave MEMORY OPTIMISATION Until near the
end d the project. Depending onthe nature of the system, you may need to plan for
EXHAUSTION TESTING, OF asggntimeto PLUG THE LEAKS.

For example, the developers of the * Super-spy 007 decided the important priority was
the constraint on RAM, since RAM memory provided the only storage — and a reset
might then erase vital information about the Master Villain's plans to destroy the
world! The next priority was the responsivenessof the user interface, to ensure quick
answers in dangerous stuations. The system’s components and interfaces are designed
to minimise memory use, and then to gve reasonable user response.

Consequences

Every member of the team will understand the priorities. Indvidual designers will be
motivated to make their own decisions knowing that the decisions will fit within the
wider context of the project. Design decisions by diff erent teams will be consistent,
adding to the coherence of the system developed, and increasing the coordination of
the project as awhde.

Y ou can estimate the impact of the memory constraints on project timescales, reducing
the uncertainty of the project. Theinitial estimates of memory needs can provide a
basis for a more formal MEMORY BUDGET for the project.

However: Decidingthe memory strategy takes time and eff ort at an important stage of a
project, and disciplineto keep to it later.

Sometimes later design decisions, functionality changes, or hardware modifications
may modfy the strategy; this invalidates the exrlier design cecisions, so might leave the
project in a worse position than if indviduals had taken randam decisiors.

0, 0, 0,
A X4 A X4 A X4

Implementation

There are afew basic principles that encourage thinking small, and underli e the design
of software for smaller systems::

Design small, code small Y ou nedl to build in memory savinginto the design as
well asinto the code of indvidual components. The
design provides much more scope for memory saving

© 1999 Charles Weir, James Noble Page 3

Major Technique: Thinking Small UNTITLED by Weir, Noble

than code.

Create bounds Avoid unbounded memory use. Unlimited recursion, or
algorithms without a limit on their memory use, will
amost certainly eventually causeirritating a fatal
system defects.

Designfor the default case It's always tempting to design yaur standard dbject data
structures to hande every possble case. But this
approach tends to waste memory. It's better to design
objects 0 that their default data structure handes only
the simplest case, and extend the objects to hande special
Cases.

Minimise lifetimes Heap- and stack- based dvjects cease to take up memory
when they’ re deleted. Y ou can save significant memory

by ensuring that this happens as early as possble [Auer

and Beck 1994

An excdlent way to promote Thinking Small i s to exaggerate the problem: emphasise
the small nessof the system. Make all the developers imagine the system is gnaller
than it is, and encourage esery team member to keep a very tight control onthe
memory use. Ensurethat each programmer knows which coding techniques are
efficient in terms of memory, and which are wasteful. Y ou can use design and code
reviews to exorcise wasteful features, habits and techniques. 1n this way you can
develop a culture where memory savingis a habit.

There are a number of other issues to consider when thinking small:

1. Memory Requirements vs. Memory Predictability. There are two independent,
yet closely related forces that bear upon buil ding small systems. The most obviousis
the absolute memory requirements of the system, that is, simply the actual amount of
memory the system requires to run. But, while minimising a program’s memory
requirements can makeit lesslikey to run aut of memory, to be ableto ship a system
you need to be confident that it can run succesully in a given amount of memory.
That isto say, you often need to be able to predict the systems’ actual memory
consumption in advance.

Because many patterns increase a program’s memory consumptionto gain

predictabili ty (such as Fixep ALLocATion) and dhers dothe reverse (such as
VARIABLE ALLOCATION), You need to consider the importance of absolute requirements
against predictabili ty when drawing up your project’s memory priorities. How you do
this will depend onthe project you are working on of course. A hand-held video
game, for example, can saveits high score and restart if it runs our of memory; but the
operating system for a pocket computer or, more importantly an embedded life-critical
system, may neal to guaranteethat it can gperate for months or years without faili ng.

2. Implicit Strategies. Many projects work in a well-understood context, so it’s nat
always necessary to make the your project’s grategy explicit. For examplean MS-
Windows drink-wrapped appli cation can assume a total system size of more than
16Mb RAM (and around 32Mb paged memory), and at least 50Mb disk space for the
program — as we can seeby studying any number of industry standard applications.

Windows deveopers dhare an unwritten understanding d the acceptable memory
requirements for atypical program. The strategy o all these Windows appli cations

© 1999 Charles Weir, James Noble Page 4

Major Technique: Thinking Small UNTITLED by Weir, Noble

and the trade-off s will tend to be similar, and these are often encapsulated in the
libraries and development environments or in the standard literature. Given this
implicit strategy it may be lessnecessary to define an explicit one; any programmer
who has worked ona similar project or read up the literature will unconsciously choase
appropriate trade-offs.

Using the sameimplicit strategy for all applications can cause designers and
programmers to owverlook lesser but still significant variations in a specific project. For
example, a Windows phatograph editor will randamly accesslarge amounts of
memory. So it may have to asaume (and explicitly demand) rather more physical
memory than aher applicatiors.

3. Developer s from Different Environments. Programmers and designers used to
one @wironment often have very great difficulty changingto a different one. For
example, MS Windows programmers coming to the EPOC or Palm operating systems
have great difficulty internalising the idea that programs must run indefinitely, and so
canna afford to run aut of memory. Windows CE developers have even more of a
problem with this, as the environment is superficially similar to namal Windows. If
programmers do nd adapt to the new environment, the resulting code will be poor
quality andis unlikely to satisfy users' neels.

0, 0,
A X4 A X4 9

Specialised Patterns

Therest of this chapter introduces $x further processpatterns commonly used in
organising projects with limited memory. Processpatterns differ from design patterns
in that they describe what you do— the processyou go through — rather than the end
resullt.

The patterns are as foll ows:

Memory Budget How do yau keep cortrol in a project where memory is very
tight? Draw up a memory budget, and plan the memory use of each
componrent in the system.

Featurectomy How do yau ensure you have an implementable set of system
requirements given the system restraints? Negatiate with the clients,
users and requirements gecification teams to produce a specification
to satisfy both users neals and the system’s memory constraints.

Memory Tracking How do yau find aut if the implementation yau're working on
will satisfy your memory requirements? Track the memory use of each
release of the system, and ensure that every developer is aware of the
current score

Memory Optimisation How do yau stop memory constraints dominating the design
processto the detriment of other requirements? Implement the system,
paying attention to memory requirements only where these have a
significant effect onthe design. Once the system is working, identify
the most wasteful areas and gotimise their memory use.

PluggingtheLeaks = How do yau ensure your program recycles memory
efficiently? Test your system for memory leakage and fix the leaks.

Exhaustion Test How do yau ensure that your programs work correctly in aut
of memory condtions? Usetesting techniques that simulate memory
exhaustion.

© 1999 Charles Weir, James Noble Page 5

Major Technique: Thinking Small UNTITLED by Weir, Noble

Think Small

Memory
Tracking

Memory
Performance
Assessment

Exhaustion Test

These patterns apply to virtually all small memory projects, from one-person
developments to vast systems invaving many teams of developers sattered worldwide.
Throughaut this chapter we'll use the phrase * development teams' to mean ‘all f the
people working onthe project’. If you're working alone, you shauld read this as
referringto yoursdf along; if asingeteam, then it refersto just that team; if alarge
project, it refersto all the teams.

Application SNV Plugging the
Switching Leaks

Figure 1. Process Pattern Relationships

Equally, the patterns themsalves work at various leves of a project’s organisation.
Suppose you' re working onthe implementation d the Strap-1t-OnTM wristwatch
computer. Theoverall project designers (‘ system architecture team’) will use each
pattern to examine the interworking d all the componrents in the system. Each separate
development team can use the patterns to cortrol their implementation o their specific
component, working within the parameters and constraints defined by the system
architecture team.

Different patterns may be more applicable to dff erent projects, however. A strondy
traditional project attempting to minimise absolute memory uses would place lots eff ort
into MEMORY BubGgETsand MEMORY TRACKING, While an extreme project just tryingto
make sure a small program didn't crash too dten would focus on MEmMoORY
PERFORMANCE ASSESSMENTS, PLUGGING THE LEAK S, and EXHAUSTION TESTING.

Known Uses

The EPOC operating system is ported to many dff erent telephore hardware platforms;
each has a different configuration & ROM, RAM and Flash (persistent) memory. So
each environment has a diff erent trade-off and application strategy. Some have
virtually unlimited nonpersistent RAM; others (such as the Psion Series 5) use their
RAM for persistent storage so must be extremey parsimonious with it.

In each case, the memory strategy is reflected in the chaice of Data Structures, in
User Interfaces, andin the use of Secondary Storage. The Psion Series 5
development used an implicit strategy, passed by word of mouth. Later ports have had
an explicit strategy documents.

© 1999 Charles Weir, James Noble Page 6

Major Technique: Thinking Small UNTITLED by Weir, Noble

See Also

THINKING SMALL provides a starting point for a project. Maost of the other patternsin
this book have trade-off s that we can evaluate only in the context of a memory strategy
for a particular project. The consequence section d each pattern describes how that
pattern aff ects the forces you need to consider in applying the pattern.

There are alarge number of other processpatterns for software development, many o
which are collected in the Pattern Languages of Program Design book series.

© 1999 Charles Weir, James Noble Page 7

Memory Budget Pattern UNTITLED by Weir, Noble

Memory Budget Pattern
A.k.a. Memory Costings

How do you keep control in a project where memory is very tight?
* You'reworking ona project where memory is limited.
» Theproject will fail if its memory requirements exceed the limits.
* You have several diff erent components or tasks using memory
» Different individuals or teams may be responsible for each.
» Savingmemory costs effort —it’s easier to let someone dse doit!
* Unnecessary optimisation wastes programmer time.

Y ou are working ona software development project, and yas' ve identified that there's
a posdbili ty that memory constraints may be a significant problem. For example, the
whde Strap-1t-On project is obviously limited by memory from the beginning. The
Strap-1t-On reals to be as gnall, as cheap, and as low-powered as posshble, but also
be usable by computer novices and have enough capacity to be adopted and
recommended by experts.

If you dorit take sufficient care of the memory constraints in the system design and
implementation, bad things will happen to the project. Perhaps the system will fail to
work at all; perhaps users will get inadequate performance or functionality; or perhaps
the cost of the extra memory hardware will make the software (or even the aitire
project, including the hardware) unsaleable.

You could have everyoneinvdved design and code to reduce minimise the system’s
memory requirements. This hould certainly reduce therisk of the system becoming
toobig, but this scorched earth approach has its own risks — if you focus ldy on
kegping memory low, you'll have to accept trade-off s e sawhere such as poor time
performance, difficult-to-use interfaces or large amounts of developer effort. More
importantly, some of the components of the system will provide more opportunities for
saving memory than ahers. Ther€ s no point in working overtime to save a few bytes
in ore component, when a minor change in anather would save many times that. How
do yau decide which components to concentrate on?

Making decisions about where to save memory becomes more complicated when yau
also haveto decide who should save memory. In projects with multiple developers or
multiple teams, everyore likes to beli eve that the problem they are working onis
unique, and harder than everyone dse's problem. Sinceit takes time and eff ort to
reduce memory use its only human to treat memory use as meone dse' s problem and
hope that someone dsewill dothework. How can yau share out the pain o saving
memory between the teams < that they can designtheir software and plan its
implementation eff ectively?

Therefore: Draw up a memory budget, and plan the memory use of each component in the
System.

Define memory consumption targets for the each component as part of the
specification process Ensurethat the targets are measurable [Gilb88, so the
developers will be able to check whether they’ re within budgget.

© 1999 Charles Weir, James Noble Page 8

Memory Budget Pattern UNTITLED by Weir, Noble

This processis gmilar to the ‘costings' processpreceding any major buil ding work.
Surveyors estimate costs and time of each part of the process to determine the
feasibility andto negdtiate the requirements of the customer.

Ensurethat all the teams buy into the budget. Invadve them in the processof deciding
the figures to budget, estimating the memory requirements and regatiating hav any
deficits are split between the different teams. Communicate the resulting budget to all
the team members andinvite their comments.

No-ore can predict the future, so a memory budget will never be correct. A quick
“back of the eavelope’ budget will be only roughly accurate, but even a more formal
and more detail ed memory budget will become lessaccurate as the project progresses.
For this reason, a memory budget needls to be aliving daument that is kept up-to-date
as the project progressss. Your should refer to it while doing MEMORY TRACKING
during cevelopment, and during the MEMORY PERFORMANCE ASSESSMENT later in the
project; revising the budget as you get better information about component’ s memory
consumption, and then using further assesament to validate the new budget. You can
apply aMEmORY LimIT to each component in the finished system to ensure that they
will never exceel their budgeted all ocation. Make meding the budget a criterion for
release of each component. Ceebrate when the targets are met!

Consequences

Thetask of setting and regatiating the limits in the memory budget encourages all the
teams to THINK SMALL, and sets slitable parameters for the design d each component.
The budget forces the team to take an owerall view of memory use, increasing the
architectural consistency of the system. Furthermore, having specific targets for
memory use greatly increases the predictability of the memory use of the resulting
program, and can also reduce the program’ s absolute memory requirements.

Because developers face specific targets, they can make decisions locally where there
are trade-off s between memory use and aher constraints. It's also easy to identify
problem areas, and to seewhich modules are kegoing their requirements reasonable, so
a budget increases programmer discipline.

However: defining, negatiating and managing the budgets requires sgnificant programmer
effort.

Developers may be tempted to achieve their local budgets in ways that have unwanted
global side dfects guch as poor time performance, off-1oading functionality to aher
modules or breaking recessary encapsulation (see[Brooks 1982). Runtime support
for testing memory budget requires hardware or operating system support.

Setting fixed memory budgets can make it more difficult to take advantage of more
memory if it should become avail able, reducing the scalability of the program.

Formal memory budgets can be unpopular with both programmers and managers
because the processadds accountabili ty without direct benefits. If the final system
turns out over budget then everyone will | oose out; if it turns out under budget then the
budget will have been ‘wrong — so those doing the budget may loose credibili ty.

Qe Qe Qe
Implementation

Producing an accurate memory budget (and the subsequent MemoRyY TRACKING) for a
serious gystem is alarge amount of work, and can impose a substantial overhead on
even asmall project. If memory constraints aren't actually a problem, maintaining

© 1999 Charles Weir, James Noble Page 9

Memory Budget Pattern UNTITLED by Weir, Noble

memory budgets expends eff ort that could be better spent elsewhere. In an informal
environment, with lessemphasis on up-front design, developers can be actively hostile
to a full-scale formal memory budget.

For this reason, many practical memory budgets are just back-of-the envelope
calculations — a few minutes work with the team on the whiteboard, summearised as a
paragraph in the design daumentation. If these simple calculations suggest that
memory will betight thenis it worth spending the dfort to put together a more formal
memory budget.

1. Which resour ces should you budget? Most systems have various diff erent kinds of
memory; with dfferent constraints on each. Here are some posshilities:

* Main memory usage, including stack memory and any system overheads. Main
memory requirements can dten be analysed further, as foll ows.
» Global memory accessed by each component of the system.
» Heap spacefor each individual component or process(if components

memory spaceis limited).

o Control stack spacefor each thread o process
* Operating System overheads (buff ers, environment space, €tc).

* Read-only memory space, for systems with code and datain ROM

» Secondary storage space, such as disks or flash RAM

* Total memory usage including RAM, main memory, and any code or data
paged o swapped orto secondary storage.

It's generally easier to budget ROM usage than RAM. ROM all ocationis constant, so
you can budget a single figure for each component, and adding these figures together
will givethetotal ROM usefor the system. In contrast, the RAM (and secondary
storage) requirements of each component will normally vary with time— unlessa
component uses only FIXED ALLOCATION.

Optimising a system’s consumption d one of these resources will often be at the
expense of the others. 1t’s worth considering each constraint in turn, if only to rule
most of them out as problems. Often orly one or two kinds of memory will be limited
enough to cause you problems, and yau can concentrate on those.

2. Enforcing Budgets in Software. Some environments provide memory use monitors
or resource limits, which you can use to enforce memory budgets. The MEMORY LIMIT
pattern describes how you can implement these limits yoursdlf. Y ou can use memory
limits to enforce the budgeted maximum memory use of each component. Some
projects may use these limits for testing orly; in aher cases they may remain in the
runtime system, so that processes or applications will fail (PARTIAL FAILURE, OF
complete failure) rather than exceed their budget.

3. Budgeting Variable Memory Requirements. The simplest approach to budgeting
is to estimate the worst case memory use of each component and add them together,
but this result is quite pesgmistic. Some kinds of systems do require such a
conservative approach (medical and processcortrol software, for example), but many
systems, only exercise afew components at any oretime. A digital diary, for example,
will have only a few appli cations running concurrently. But even in lesscritical

appli cations, different components’ memory useis nat independent. For example, the
peak memory use of awirdessweb browser is likely to coincide with the peak memory
use of the network driver and web page cache.

© 1999 Charles Weir, James Noble Page 10

Memory Budget Pattern UNTITLED by Weir, Noble

To deal with these dependencies, you can identify a number of worst case scenarios for
memory use, and construct a budget for the memory use of each component in each
scenario. Often, it is enough to estimate an average and a peak memory requirement
for each component and then estimate which components are likely to have peak
requirements for each worst-case scenario. Y ou can then estimate the total memory
requirements for each scenario (buy summing the peak or average usage for each
component as appropriate) and regatiate a budget so that each scenario’stotal is less
than the memory avail able to the system.

4. Dealing with Uncertainty. Software development in the real world is
unpredictable. Often, it turns out to be just too dfficult or too expensive to reduce
every component’s memory requirements to its budgeted limits. If there are many
comporents, ther€ Il be a goodchance that at least one will be over budget, andthe
secondlaw of thermodyramics [Flanders& Swan] saysit is unlikely that components
will be correspondngy under budget.

To addressthis, ensure that thereis some slack in the budget: a memory overdraft
fund. Theamount of memory to set aside depends on hav uncertain the initial
estimates are; typical overdraft all ocations would be between 5% and 20% of the total
budget. The resulting budget will be more resili ent in the face of development
redlities, increasing the overall predictability of the program’s memory use. However
you must be careful to ensure that programmers dorit reduce their discipline and take
the overdraft for granted, reducing the integrity of the budget.

Example
The Palm Pil ot has an interesting budget for its dynamic heap (used for all non
persistent data). Because only ore applicationruns at atime (APPLICATION
SwiITCHING), the budget is the same for every applicationthat can run ona given
machine.

Thefollowingis the Pilot’s budget for PAlmOs 3.0, for any unit with more than 1
Mbyte of memory [Palm 200Q. Machines with lessmemory are e/en more

constrained.

baK System globals (screen buffer, Ul
globals, database references, etc.)

32k TCP/IP stack, when active

\Variable IrDA stack, "Find" window, other

amount system services

Ak (by default) Apphcathn stac_:k (the application
can override this amount)
Available for application globals,

up to 36k static data, dynamic allocations,
etc.

Table 1: Palm Pilot 3.0 Memory Budget

© 1999 Charles Weir, James Noble Page 11

Memory Budget Pattern UNTITLED by Weir, Noble

Known Uses

The OS/360 poject included overdrafts as part of their budgets [Brooks75]. In that
project, the managers found it important to budget for the total size of each module (to
prevent paging), and to specify the functionality required of each module as a part of
the budgeting process(to prevent programmers from offloading functionality orto
other componrents).

A current mobil e phore project has two particular architectural chall enges provided by
a hardware architecture originally defined for a very diff erent software evironment.
First, ROM is extremely limited. Based ona Memory Budget, the team devised
compresgon and sharing techniques, and regadtiated Featurectomy with their clients.
Second though RAM in this phoreis relatively abundant, restrictions in the memory
management architecture means that each processmust have a pre-all ocated heap, so
every processuses the RAM allocated to it at all times. Thus the team could express
the RAM budget in terms of a singe figure for each process— the maximum, or worst
case, figure.

The Palm documentation specifies a standard memory budget for all Pil ot applications.
Since only ore application runs at atime, thisis graightforward. Most UNIXes all ow
you to define alimit onthe heap memory of a process and EPOC’ s C++ environment
can enforce a maximum limit on application heap sizes— these examples are
discussd further in the MEmMoORY LimIT pattern.

See Also

There are threecomplementary approaches to developing a project with restricted
memory. The MEMoRY BUDGET pattern describes how to tackle the problem up frort,
by predicting limits for memory, and then implementing the software to kegp within
these limits. The MEMORY TRACKING pattern gathers memory use statistics from
developers as the program is being built, encouraging the developersto limit the
cortribution d each component. Finally, if memory problems are evident in the
resulting program, a MEMORY PERFORMANCE AssSESSMENT the devel opers uses post-hoc
analysis to identify memory use hat spots and remove them. Any o these approaches
can be backed up by enforcingMEemMoRy LimiTsat runtime.

For some kinds of programs you canna produce a complete budget in advance, so yau
may need to all ocate memory coarsely between the user and the system, and then
MAKE THE UserR WoORRY about memory. Systems that satisfy their RAM or secondary
storage memory budget when they’re started may still gradually ‘leak’ memory over
time, so yau’'ll need to PLuG THE LEAK S as wll.

The SwALL ARCHITECTURE pattern, and the other architectural patterns that follow it,
describe how you can ensure each component in a system takes responsibili ty for its
own memory use, andthus is more likely to med its budget.

Components that use Fixep Size MEMoRY are much easier to budget than those using
VARIABLE SiZE MEMORY.

[Gilb88 describes techniques for *attribute specification’ appropriate for defining the
project’ s targets.

© 1999 Charles Weir, James Noble Page 12

References UNTITLED by Weir, Noble

References

[Auer + Beck 96] Ken Auer and Kent Beck. Lazy Optimization: Patterns for Efficient
Smalltalk Programming. Chapter 2 in Patterns Languages of Program Design
2. JohnM. Vlisgdes, James O. Coplien and Norm L. Kerth, editors. Addison
Wesley, 1996

[Brooks82] Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1982

[Flanders& Swan| Thelaws of thermodyramics. The Drop of (Anather Hat). Parlophore.
[Gilb8] Principles of Software Engineaing, Tom Gilb, Addison Wesley 1988 0-201-
192462

[PAlm200F]PalmInc. Palm OS DK Reference. Palm Inc. Santa Clara, California. 200Q

© 1999 Charles Weir, James Noble Page 13

