A Unit Testing Pattern Language

Peter Gassmann

Unit Testing is a software development practice which has recently gained popularity through
a new development methodology called eXtreme Programming (XP). The success of unit tests
in a project depends on a well-defined relationship between production and test code. This
paper identifies structures, which have been used successfully, and documents them in the
form of a pattern language. In addition, important process patterns are identified which help
to use unit tests successfully.

Keywords: Unit Testing, eXtreme Programming, JUnit

INTRODUCTION

Unit Testing is a development practice and usually part of an overall testing strategy.
Although known for many years, it is not widely used by developerstoday. Thisis probably
due to the fact that the value of unit testing has been underestimated, and that most developers
simply do not know how to apply it. It does not fit well in the traditional development cycle
of first designing, then implementing and finally testing big portions of code. In a project with
changing and developing requirements, unit tests help to stabilize the system. They aso alow
for faster and more aggressive changes, because any errors introduced with a change are
detected immediately. And they help to create a very short feedback loop for the devel oper.

Unit testing is not testing done by specialized testers; it is rather part of the daily development
routine of a programmer. Unit testing means testing a unit of code. A ‘unit of code’ in an
object-oriented system is usually a class. However, it could also be a whole component or any
other piece of related code. A unit test should be an automated test. * Automated’ means that
the results are verified automatically. Thisis necessary to be able to run alarge number of
tests without human intervention. By running all tests written for the production code, the
complete system can be tested automatically. The tests are usually written in the same
computer language as the production code. The test verification is therefore code which
compares actual results to expected results. If aresult is unexpected, the test fails (whichisa
success because a problem has been identified!). This kind of testing contrasts with the usual
traces (in Java syst em out . pri nt I n(..)) mixed into the production code, where the
programmer looks at the output on the command line and tries to figure out whether the code
has behaved as expected.

The success of unit testsin a project depends on a well-defined relationship between
production and test code. This paper identifies such structures, which have been used
successfully, and documents them in the form of a pattern language. The language consists of
structural patterns and process patterns. The patterns are illustrated with solutions
implemented in Java. For some patterns, [JUnit] is used to discuss the solution.

The paper intends to help devel opers starting to use unit tests. It offers help in defining the
structures of the unit tests in a project, and it gives information on the development process.

Copyright 2000 Peter Gassmann. All rights reserved.

A Unit Testing Pattern Language Peter Gassmann

Organization of the document

The patterns are ordered along atypical development story. The development story iswritten
in blocks that start with the following icon: %

Javais used to illustrate the development story. In the development story no differentiation is
made between the structural patterns and the process patterns. To see al patterns of one
group, the reader may look at the pattern map. It is advisable to read the patterns along with
the development story, even if some of them contain forward references to other patterns. The
last pattern of the pattern language, UNIT TEST FIRST, deserves special attention because
applying this pattern further multiplies the benefits of unit testing beyond the verification of
functionality.

The Pattern Form

The pattern form contains the name of the pattern in itstitle. Some patterns start with a short
introduction. Each pattern contains a problem section in the form of a question. The forces
section describes the driving forces that should be resolved with the solution. The solution
describes the solution in general terms. The discussion section gives additional details,
presents sample solutions and relates to other patterns. References to other patterns are shown
in SMALLCAPS.

If there are [JUnit] specific hintsin the discussion section, they are marked with the icon:

U

Known Uses

Kent Beck is one of the most important promoters of unit testing. He has written a unit testing
framework for Smalltalk and has later ported the framework to Java together with Erich
Gamma [JUnit]. There are unit testing frameworks available for many other languages,
including C++, Perl and others. See the link under [JUnit].

Some of the patterns are also described in [Binder99]. Particularly in Incremental Testing
Framework some of the basic structures of a unit testing framework are described.

Many of the structural patterns are implemented in [JUnit]. Therefore it can be concluded that
these patterns can be found in most projects using [JUnit]. The author is using [JUnit] on his
current project at FJA Feilmeier & Junker AG, where additional structural patterns and the
described process patterns are used. A few of the structural patterns are described in
[Beck94]. Some of the process patterns are also described online in [Wiki] and in [Beck99],
although not in pattern form.

Unit Testing is part of the eXtreme Programming (XP) methodology [Beck99]. But since unit
testing is mostly independent of the other XP practices, it may be used in any software
development project.

testing_patterns_000601.doc Page 2 of 24

A Unit Testing Pattern Language Peter Gassmann

Pattern Map

The following map shows the relationships between the patterns. The arrow points to other
patterns that help to resolve the forces introduced or only partially resolved by a pattern. Most
of the patterns should not be used alone, only with the help of the other patterns can all forces
in the system get in balance.

STRUCTURAL PATTERNS

TEST DECORATOR NONSENSICAL TESTDATA

|_—

CREATE TESTDATA ON THE FLY «—» CLEANUP TESTDATA AFTER TEST

N T

TEST SETUP TEST TEARDOWN TESTDATACREATOR

N/

TESTRUNNER ——————» TESTCASECLASS <+ » TESTPACKAGE

O

TEST SUITE

\

MAIN METHOD ————» ALLTESTS

e

ASSERT

TESTMETHOD

"

UNIT TEST FIRST ——» RUN OFTEN «—— RUN AT 100%

T

RUN TwICE RUN TESTS BEFORE INTEGRATION

PROCESS PATTERNS

testing_patterns_000601.doc Page 3 of 24

A Unit Testing Pattern Language Peter Gassmann

THE PATTERNS

To explain the patterns in this document, we shall use a software development story.

We are going to write an insurance system. An important artifact in insurance
software is the contract. Therefore we start with anew class called cont ract . Cont r act
contains various attributes like sum insured, customers rebate and risk category which may be
changed using set-methods, and accessed via get-methods. The set- and get-methods are
trivial and do not need tests. But cont ract contains another method, cal cul at ePremi ung(),
which isnot trivial and therefore should be tested. The premium is calculated using attributes
of the contract. Asthe first thing we need to decide where to put the code to test
cal cul at ePreni um We introduce the patterns TESTCASECLASS and TESTMETHOD...

TESTMETHOD

Intro To create aflexible system, the methods of atypical class often accept
parameters. Since these parameters may vary during execution, thereisa
potentially large number of possible inputs and resulting outputs of calling a
method. A combination of input parameters which makes sense from a user
perspective is often called ,test point“ [Binder99, p.47]. Thereisusualy a
number of related test points, which vary only in the values of the actual

parameters.

Problem Where should the code be placed which implements the test for a particular test
point?

Forces An effective unit testing system requires that tests be executable independently

of other tests. Thisisimportant because otherwise the tests would just stop at
the first test that fails, and this would make it harder to see where the problem
in the system redlly is.

There are several possibilities of implementing tests. The simplest would be to
put the tests for all test points into one big method "test”. This, however, would
make it difficult to continue execution if one test fails. In addition a method
testing, for example, 10 different test pointsis certainly not easy to understand
anymore. Additionally, the method name would not give any hint about the
content of the test. It would be hard to find the corresponding test code when
the production code gets changed and the test therefore has to be changed, too.

Solution Write one method for each test for atest point. The method name should reflect
the content of the test. Thisisimportant to find related tests.

Discussion It isadvisable to place all TESTMETHODS which test the functionality of one
production-class in a TESTCASECLASS. This makes it easy to find the
implementation of related tests.

An example of related tests and their respective method names, where each test
deals with calculating the premium: t est Cal cul at ePr eni umMedi unRi sk,
t est Cal cul at ePrem unmLowRi sk, testCal cul at ePrem unH ghRi sk.

It is advisable to use a naming convention for the names of TESTMETHODS. For
example [JUnit] expects a TESTMETHOD to start with ,test”. The TESTRUNNER
will then be responsible for the execution of a TESTMETHOD.

testing_patterns_000601.doc Page 4 of 24

A Unit Testing Pattern Language Peter Gassmann

See also Test Case/Suite Method and Test Case/Suite Class [Binder99].
Also known as Test Case [Beck94].

TESTCASECLASS

Intro

Problem

Forces

Solution

Discussion

A production class has usually more than one method which is non-trivial and
needs testing. There are usually several TESTMETHODS related to one
production class.

Where should the code for various tests related to one production class be
placed (e.g. TESTMETHODS plus additional code)?

The code for the TESTMETHODS could be written in several places. The most
obvious place would be directly in the production class. However, this would
make it very hard or even impossible to distinguish between production code
and testcode. And it would make the production code bigger, which isa
problem if the code needs to be loaded over a slow network connection or has
to run on asmall system. The latter can be avoided by conditional compilation
such as provided by C. One advantage of testcode in production code is that the
developer isforced to keep the test code consistent when changing the
production code.

Another solution would be to put all testcode into one single testclass. A typical
software system is made of many classes, sometimes hundreds. If all
TeSTMETHODS for all production classes were put into one testclass, the result
would be the mother of all classes containing hundreds of methods. This would
make it easy to find testcode, because it must be in that class. On the other
hand, it would be hard to find related tests without extremely well chosen
method names.

When developing a class, one would usually like to execute just the tests for
that particular class, until they are successful. If all tests are in one big class,
how could just the required tests be executed?

All TESTMETHODS for exactly one production class plus additional helper-
methods should be placed in a separate TESTCASECLASS. A TESTCASECLASS
should contain al tests directly related to one production class. The name of the
TESTCASECLASS should be connected to the name of the production class.

It is advisable to use a naming convention for the names of testclasses. A
common pattern isto use “Test* as a prefix or postfix to the name of the class
under test, e.g. Contract -> Contract Test . A TESTCASECLASS should be
placed in a TESTPACKAGE.

With [Junit], a TESTCASECLASS is usually implemented as a subclass of
junit.franmework. Test Case.

See also Test Case/Suite Method and Test Case/Suite Class [Binder99].

testing_patterns_000601.doc Page 5 of 24

A Unit Testing Pattern Language Peter Gassmann

After applying TESTCASECLASS and TESTMETHOD we have a class Cont r act Test With
an empty method t est Cal cul at ePr eni un() . Now we want to implement the test
methods.

Tests should have a common structure to make them easily understandable. The basic
structure of atest is always the same:

1. Prepare IUT (implementation under test [Binder99]).
2. Executeor call IUT.

3. Compare actual results to expected results.

4. Cleanup.

Preparation usually means to instantiate the IUT and then call several set-methods of the [UT
to configure a particular test point. Execution of the I[UT meansto call at least one method of
the IUT, which produces an observable result. The observable result is then compared to the
expected result. An observable result is usually the return value of the invoked method, it
could also be a thrown exception or a value which can be accessed via a get-method.

Cleanup means to free resources used in the test, and undo changes made to the environment.
Thisisimportant because unit tests must be repeatable. This means it must be possible to
execute the tests, devel op some functionality, and execute the tests again to see whether the
new functionality has introduced afailure. If atest would make persistent changes, for
example deleting a required file, or changing a database entry, the test might fail during the
next execution. Such afailure would not be the result of wrong code, but an external
dependency, which was not met at runtime.

Preparation is often similar for several TESTMETHODS in one TESTCASECLASS. This leads us
to the pattern TEST SETUP...

TEST SETUP

Problem Where should code be placed which needs to be executed before each
TESTMETHOD in a TESTCASECLASS?

Forces To be able to test a class, a certain amount of test preparation is aways
required. The simplest case is to create a new instance of the class to be tested,
but quite often preparation is more complicated. Usually al TESTMETHODS in a
TESTCASECLASS test the same production class. Therefore, test preparation is
often similar for all TESTMETHODS in @ TESTCASECLASS.

The preparation code could be written at the beginning of each TESTMETHOD.
But the resulting code duplication is certainly not a good solution.

As abetter solution, the common preparation code could be placed into a
separate method, which could then be called at the beginning of each
TESTMETHOD. This solves the duplication problem, however, the developer still
needs to remember to call the preparation method when he adds a new test to
the class later.

testing_patterns_000601.doc Page 6 of 24

A Unit Testing Pattern Language Peter Gassmann

Solution A set Up-method should be written in the TESTCASECLASS, which is executed
before each TESTMETHOD. The TESTCASECLASS should call the set up-method
before invoking the TESTMETHOD.

The basic execution scheme for a TESTMETHOD should look therefore as
follows:
for all testnmethods XXX in testclass {

testclass. set Up();

testclass. test XXX();
testcl ass. t ear Down() ;

}

The set up-method should contain test preparation code that is common to all
TESTMETHODS in the TESTCASECLASS. TESTMETHOD specific preparation code
would still be placed at the beginning of the TESTMETHOD.

Discussion Theclassj unit. framewor k. Test Case contains a template-method called set Up.
The set p-method could be used to CREATE TESTDATA ON THEFLY. The
U opposite of TEST SETUP is TEST TEARDOWN. The basic execution scheme as
described above should be implemented in the TESTCASECLASS (See
junit.framework. Test Case. runBar e()).

Typical logic placed in set Up isinitializing a database (for example using a
TESTDATACREATOR), loading configuration data, and preparing objects for the
test.

TEST SETUP could also be applied to a TEST SUITE, to add test preparation code
to a number of TESTCASECLASSeS. See also TEST DECORATOR.

Also known as Fixture [Beck94].

As the result of applying TEST SETUP, which is the first step of the general test
structure, our testclass Cont r act Test now looks as follows;

public class Contract Test{
private Contract contract_; // initialized in setUp and used in the tests

public void setUp(){
contract_ = new Contract();
/1 we initialize our contract
contract _. set Contract Type(Contract. LI FE_I NSURANCE) ;

cont ract:. set Ri skd ass(Ri skd asses. MEDI UM _RI SK) ;
contract _. set Sum nsur ed(5000000) ;
contract _. set Cust oner Rebat e(0) ;

}

public void testCal cul atePrem un() {
}
}

In the testmethod (t est Cal cul at ePr eni um), we want to compare the result of invoking
cal cul at ePr eni umto the expected result. The pattern ASSERT will help us here...

testing_patterns_000601.doc Page 7 of 24

A Unit Testing Pattern Language Peter Gassmann

ASSERT
Problem How should testresults be analysed and reported?
Forces To be able to run alarge number of tests in reasonable time without human

intervention, tests need to verify their success automatically. This means that
they have to check whether an actua result is correct or not. One way to
implement checking would be by using an if-statement. If the if-statement is
false, the test is aborted.

A failure needs to be recorded to provide a summary of al failures and
successes. This meansthat if the if-statement is false, the test must be aborted
in away that the failure is recorded. However, this requires that the devel oper
writes the if-statement and does not forget to register the failure. In thisway the
comparison and bookkeeping code would be quite complicated.

Solution There should be various methods available when implementing tests, for
example in atestframework, to perform basic comparisons of test results. These
methods should also support registration of the test result. The comparison
methods should be named "assert...", because thisis awell known term for
evaluating an expression in many languages.

Using a common name has the additional advantage that the places of
comparison in the testmethod can be easily spotted.

Discussion Theclassj unit. framewor k. Test Case defines various methods to perform basic
comparisons. They al start with "assert”. If an assertion fails, e.g. the
U comparison returns false, the assert-method throws a runtime-exception, which
aborts the test. The TESTRUNNER registers a runtime-exception as afailure.
Failures or errors are registered inj uni t . framewor k. Test Resul t instances,
which capture al the necessary information about the failure or error.

[Binder99] contains a chapter on assertions, with example implementations for
many programming languages.

ASSERT isimplemented as an assertion method [Riehle2000].
Also known as Check [Beck94].

% An implementation of an assert-method and our testmethod now |ooks as follows:

public void assertEqual s(String nmessage, int expected, int actual)({
if (expected != actual){
/1 the caller of the test needs to catch AssertExeptions to record
/1l failures. AssertionFailedError is a sinple subclass of
/1 java.lang.Error and part of the unit testing framework.
t hrow new AssertionFail edError(nmessage + ": expected:"+expect ed+
", actual : "+actual);

}

public void testCal cul at ePrem un(){
/1 we know t hat the conbi nation of Ri skd ass, Sum nsured, ContractType
/] and CustomerRebate initialized in setUp should result in the
/1 following premum:
i nt expectedPremn um = 5000;
int actual Premi um = contract_. cal cul atePrem un();
/1 we invoke the assertEqual s- et hod.
/Il the first paraneter will be displayed as an expl anation nessage if the
/1 conparison fails.
assert Equal s("prem um cal cul ation fail ed", expectedPrem um actual Prem um;

testing_patterns_000601.doc Page 8 of 24

A Unit Testing Pattern Language Peter Gassmann

We have now implemented step two and three of the test structure as explained before the
pattern TEST SETUP. This leaves step 4, cleanup. Let us have alook at TEST TEARDOWN...

TEST TEARDOWN

Problem Where should code be placed which needs to be executed after each
TESTMETHOD in a TESTCASECLASS?

Forces Since usually all TESTMETHODS in a TESTCASECLASS test the same production
class, they require the same kind of testdata. But testdata should be deleted
again after atest, even if the test fails. Other cleanup might be required, such as
freeing resources. Therefore, test cleanup is usually similar for all
TESTMETHODS in @ TESTCASECLASS.

The cleanup code could be written at the end of each TESTMETHOD. But the
resulting code duplication is certainly not desirable.

As abetter solution, the common cleanup code could be placed into a separate
method which could then be called at the end of each TESTMETHOD. This solves
the duplication problem, however, the developer still needs to remember to call
the cleanup method when he later adds a new test to the class. An even bigger
problem is that the cleanup code needs to be executed even if the test fails! But
if atest fals, e.g. an assertion evaluates to false, execution of the TESTMETHOD
isimmediately aborted, the end of the testmethod is never reached and
therefore the cleanup code not executed. Not executing the cleanup code could
lead to failures when the tests are run the next time.

Solution A t ear Down-method should be written in the TESTCASECLASS, which is
executed after each TESTMETHOD. The TESTCASECLASS should call the
t ear Down-method after executing the TESTMETHOD, even if the test failed.

The basic execution scheme for a TESTMETHOD should therefore be as follows :

For all testmethods XXX in testclass {
testcl ass. set Up();
testclass. test XXX();
t estcl ass. t ear Down();

}
Discussion Theclassj uni t. f ramewor k. Test Case contains a template-method called

t ear Down. The tearDown-method could be used to CLEANUP TESTDATA AFTER

U TEST. The opposite of TEST TEARDOWN is TEST SETUP. The basic execution
scheme as described above should be implemented in a TESTCASECLASS. It is
important to note that t ear Down should be executed by the TESTCASECLASS also
when the test failed.

testing_patterns_000601.doc Page 9 of 24

A Unit Testing Pattern Language Peter Gassmann

Since we have not made persistent changes or used resources in our tests so far, we
@ can just write an empty t ear Down-method to complete the common test structure:

public void tearDown() {
}

Revising the basic structure of atest, we see now that we have a pattern for each step:
1. Prepare IUT (implementation under test [Binder99]) -> TEST SETUP

2. Executeor call IUT -> TESTMETHOD

3. Compare actual results to expected results -> ASSERT

4. Cleanup -> TEST TEARDOWN

We have implemented our first test, which checks the resulting premium for a medium risk
contract. We now want to write atest to verify the result for a high-risk contract. We write
another test-method for that purpose. We recognize that we need some setUp code common
for both test-methods, e.g. creating the cont ract instance, but we also need some test-method
specific preparation code like setting the risk type of the contract. We also change the test-
method names to better reflect their content. The result looks as follows:

public void testCal cul at ePrem umvedi unRi sk() {
contract _. set R skC ass(Ri skd asses. MEDI UM RI SK) ;
/1 we know that the conbination of R skC ass, Sum nsured, ContractType
/1 and Custoner Rebate should result in the follow ng prem um:
i nt expectedPreni um = 5000;
int actual Premi um = contract_. cal cul atePremi un();
/1 we invoke the assertEqual s- et hod.
/Il the first paraneter will be displayed as an expl anati on nessage if the
/1 conparison fails.
assert Equal s("prem um cal cul ation fail ed", expectedPrem um actual Prem um;

}
public void testCal cul at ePrem unH ghRi sk(){
contract_. set R sk ass(R skd asses. H GH_RI SK) ;
/'l we know that the conbination of R skC ass, Sum nsured, ContractType
/1 and Custoner Rebate should result in the follow ng prem um:
i nt expectedPreni um = 8000;
int actual Premi um = contract_. cal cul atePremi un();
/1 we invoke the assertEqual s- et hod.
/Il the first paraneter will be displayed as an expl anati on nessage if the
/1 conparison fails.
assert Equal s("prem um cal cul ation fail ed", expectedPrem um actual Prem um;

}
Of course we want to execute the tests now. Let us have alook at TESTRUNNER...

TESTRUNNER
Problem How can tests be executed and their results collected?

Forces If the tests are organized in TESTCASECLASSes, each TESTCASECLASS could
implement a main-method (in Java, or something similar in other languages). In
this main-method, the developer would write code, which calls each
TESTMETHOD in the TESTCASECLASS, and records failures and successes. At
the end, the failures and successes could be displayed in some way. However,
this would require the developer to implement test execution logic for each
TESTCASECLASS separately, again and again. Additionally, with this concept it
would be difficult or impossible to execute many TESTCASECLASSeS in a series,
and collect the results, which is required when testing the whole system to see
whether all tests work or not.

testing_patterns_000601.doc Page 10 of 24

A Unit Testing Pattern Language Peter Gassmann

Solution There should be a helper class, which automatically executes any class which
contains TESTMETHODS. The class should register failures and errors during
execution of the tests. A failing test must be handled in such away that the
following TESTMETHODS are still executed.

A class to be executed by the TESTRUNNER should contain a method which
executes all TESTMETHODS contained in that class (e.g. runTests()).

Discussion [Junit] requires a TESTCASECLASS to implement the interface
U junit.framework. Test to be executable by the TESTRUNNER.

We have implemented a smple version of TESTRUNNER for our purposes. To be able
to execute different TESTCASECLASSes, we shall now write an interface Test which
defines the methods to be used by TESTRUNNER:

public interface Test{
/** Execute all tests and return the nunber of failures /
public int runTests();

}

public class Testrunner{
[** The first argunent is expected to be the nane of a class that
i mpl enents the Test interface */
public static void main(String[] args){
Test testC ass = (Test)d ass. forNanme(args[0]);
execut eAl | Test s(testd ass);
}
private static void executeAll Tests(Test aTest)({
i nt nunber O Fai l ures = aTest.runTests();
if (nunmberOfFailures > 0){
Systemout.println("Failed: Nunber of failures for Test ["+aTest+"]:"+
nunmber O Fai | ures) ;

}
el se{

Systemout.println("Successfully run ["+aTest+"].");
}

}
}

We shall add the Test interface to our testclass and implement it as follows:

public class Contract Test inplenments Test{
public int runTests()({
i nt nunber O Fail ures = 0;
try{
set Up() ;
t est Cal cul at ePr eni univedi unRi sk() ;

}
cat ch(Exception e){
nunber O Fai | ur es++;

}
finally{

t ear Down() ;
}

try{
set Up();
t est Cal cul at ePr em unH ghRi sk();

cat ch(Exception e){
nunber O Fai | ur es++;
}

finally{
t ear Down() ;

testing_patterns_000601.doc Page 11 of 24

A Unit Testing Pattern Language Peter Gassmann

We now know how to write tests and how to execute them. We can now add more production
code and more tests. To make sure that we do not introduce undetected errors, we have to
execute the tests as often as possible or necessary ...

RUN OFTEN

Problem How often should tests be executed?

Forces Unit tests may be run frequently or only at special occasionsin the
development process. The overall development process with unit testsis as
follows:

1. Runthetests. They must execute completely successful.
2. Develop some code.

3. Runthetestsagain. If there are failures, step 2 must have introduced the
problem. Fix the problem. If test execution in step 1 had not been
completely successful, it would require additional effort to find out whether
step 2 introduced the error, or if the error was already there before step 2.

Tests could be executed just before functionality is delivered to the customer
(traditional testing at the end of the project). Since this happens usually only
after afew months or even years of development, the developer would learn
very late that his functionality does not work as expected. And he certainly
could not remember every change he has made to the system after the last test
execution.

Tests could also be executed once a week. The feedback cycle would be shorter
this way. But in one week so much functionality is typically developed that
could be responsible for atest failure, that it still would be rather difficult to
remember or find out which part of the new functionality made a test fail.

On the other hand, making a small change and then running the whol e test suite
might be quite time-consuming. In an average system, executing all unit tests of
the system can easily take afew minutes.

Solution The tests should be run often, to get feedback from the tests as soon as possible.
If only afew minutes have passed since the last successful execution, the
developer will easily remember what he has changed. And one of these changes
must be responsible for the failure. The immediate feedback is one of the main
benefits of having unit tests [Beck99], [Gassmann].

How often to run the tests depends on the magnitude of the change (e.g. the risk
that something might break because of the change), and the time required to run
the test(s). It is not always necessary to run all tests of the system, normally the
tests for the class one is working on are sufficient.

Discussion Inatypical development scenario, tests are executed afew times per hour. First
just the tests for the production class, which is being developed. This may
happen many times per hour. When these tests are all successful, the tests for
the package and then the whole system are executed as well, to see if there are
any side effects on other parts of the system.

If it istoo complicated or if it takes too much time to execute a test, developers
will not invoke the tests often enough. MAIN-METHOD may be considered to
make it easy to start atest. TEST DECORATOR may be considered to optimize
execution time if all TESTMETHODS are using the same set of testdata.

testing_patterns_000601.doc Page 12 of 24

A Unit Testing Pattern Language Peter Gassmann

We have started to develop another class cust oner . We are also writing tests for this

class, so we have another testclass called cust oner Test . It is aready foreseeable that
in the end we will have many testclasses. Should we keep the testclasses in the same package
as the production code? Let us have alook at TESTPACKAGE...

TESTPACKAGE

Problem
Forces

Solution

Discussion

Into which package or namespace should test code be placed?

In an average system there will be many testclasses (see TESTCASECLASS). Ina
well-tested system there might be as many as one TESTCASECLASS for each
production class.

The testcode could be placed into the same package as the production code. But
there is no obvious way to distinguish test code from production code this
makes the system less understandable for the devel opers.

Additionally, when preparing the system for the end-users, the test code is
usually not put into the final executable to save space, particularly if the code
needs to be loaded via network. Therefore the person who does the preparation
needs to know which code is production code and which is test code as well.

If the test code is placed in the same package as the production code, the
package visibility feature of the Java language could be (mis-)used in the tests.
Since another user of aclass outside of the package cannot use package
visibility features, they should neither be used in the tests.

At least one separate package for the TESTCASECLASSES should be created.
This makes it easy to identify test code, and it provides a more realistic scenario
on how another class may use a production class because the package visibility
feature of the Java language cannot be used in the tests.

The test package contains all testclasses, plus additional helper classes like
TESTDATACREATOR. In alarge system, it is advisable to create a TESTPACKAGE
for each production package. To execute all testclasses in atest package,
ALLTESTS may be considered.

If the package visibility feature needs to be used, separate production code and
test code source trees may be considered. This way test code could be placed
logically in the same package as the production code, but for the developer it
would be in a different location. Note however that, for example, VisualAge for
Java does not support such a setup.

testing_patterns_000601.doc Page 13 of 24

A Unit Testing Pattern Language Peter Gassmann

We have written a number of TESTCASECLASSes for all our cont ract related classes.
But we still have to start the TESTRUNNER for each TESTCASECLASS separately. Now
we would like to execute all testsrelated to Cont ract in one go...

TEST SUITE
Problem How can several tests be combined to run together?

Forces In atypical development scenario, the tests are executed afew times per hour.
First just the tests for the production class (for example Cont ract Test) which is
beeing developed. When these tests are all successful, the tests for the package
and then the whole system are executed as well, to see if there are any side
effects on other parts of the system. This means that many Testmethods defined
in various TestCaseClasses must be executed together.

One solution would be to define for each TESTMETHOD the following
TESTMETHOD to execute. But in the above scenario, the TESTMETHODS defined
in cont ract Test Must be executed first alone, then together with the other tests
in the same package and finally with all tests of the system.

Solution A class should be created which implements the required interface to be
executable by the TESTRUNNER (€.g. runTest s()). InrunTest s, any number of
other classes that contain tests may be called. Schematically, this could be as
follows:

Testrunner. execut eAl | Test s{
-> mai nTest Sui te. runTest s() {
-> testl.runTests(){
/] TestSuite
-> test1l. runTests(){
-> test Met hod111()
-> test Met hod112()

-> test12. runTests(){
-> test Met hod121()
}

}

-> test2.runTests(){
/] TestSuite
-> test2l.runTests(){
/] TestSuite
-> test211. runTests(){
/1 Test Cased ass
-> test Met hod2111()
}
}
}

-> test3.runTests(){
-> testMet hod31()
-> testMet hod32()

}
}
}

In this way, test suites may be composed from other tests and test suites.

Discussion Theclassj unit. framewor k. Test Sui t e iS used to group tests to be executed
together. The framework uses Test Sui t e t0 extract the TESTMETHODS from a
U TESTCASECLASS.

See also Test Case/Suite Method and Test Case/Suite Class [Binder99].
See also Test Suite [Beck94].

testing_patterns_000601.doc Page 14 of 24

A Unit Testing Pattern Language Peter Gassmann

We have aready quite afew tests that we execute often to test our system. Isthere no
easier way to execute the tests than to start the TESTRUNNER and type in the name of
the TESTCASECLASS (that is how [JUnit] requiresit)?

MAIN METHOD

Intro

Problem
Forces

Solution

Discussion

In atypical development scenario, tests are executed many times per hour. If
starting atest istoo complicated, developers will start the tests less frequently,
which lowers the benefits of having unit tests.

Which isthe easiest way to start a particular test?

There are several ways how a unit test may be started using a TESTRUNNER, as
for example implemented in [JUnit].

The first way isto start the TESTRUNNER and type the name of the
TESTCASECLASS into afield on the TESTRUNNER-GUI. Thisrequires that the
developer types the correct name of the test every time he wants to execute the
test.

A newer version of [JUnit] stores a history of executed tests. But with over 100
testclasses in a project (as for example in the project described in [Gassmann)),
this again becomes difficult to use.

In Java, a main-method should be written which calls the TESTRUNNER, which
in turn executes the tests. Note that this solution only makes sense if the
development environment makes it easy to start any class with a main-method.

In a development environment like Visual Age for Java, which allows execution
of aclass with just one mouse-click or a keyboard-shortcut, writing a main-
method is certainly the most elegant solution. Since the main-method for the
test-classes always looks the same, it might help to automate writing the main-
method by providing atool, which generates the main-method for a particular
testclass. Here is a sample main method for an AllTests-class which uses
[JUnit] :

Public static void main(){

String[] nyargs = new String[]{All Tests. cl ass. get Nane()};
junit.ui.Test Runner. mai n(nmyargs);

}

The default way to execute atest with [JUnit] is to start the TESTRUNNER and
type in the name of the TESTCASECLASS. Thisis clearly not the most effective
way to execute tests.

See also Command Line Test Bundle [Binder99].

testing_patterns_000601.doc Page 15 of 24

A Unit Testing Pattern Language Peter Gassmann

We have just applied MAIN METHOD to our testclasses. After having written afew
more TESTCASECLASSeS, it becomes apparent that our TESTSETUP methods contain a
lot of duplicated test preparation code. Where should we put common test preparation code?

TESTDATACREATOR
Problem Where should common code to prepare testdata be placed?

Forces When testing a system with different entities, which have relations to each
other, there is often a common testdata-structure. For example, in an insurance
system there is usually a partner with addresses, who has one or more contracts.
When testing the contract-related classes, a complete set of datais needed. But
the same set of datais also needed while testing the partner-related classes, e.g.
there is more than one testclass that needs to create the same set of testdata.

The test preparation code could be written in every testclass that requires it.
Thiswould lead to undesirable code duplication. It would also make it difficult
to find all the places to change, if, for example, the code to create an address-
object changesin abasic way.

Solution A helper-class should be written to create different sets of testdata. This
concentrates the required logic in one place and avoids duplication.

Discussion The testdata-creator class should be placed in a TESTPACKAGE. The testdata-
creator class may be used to CLEANUP TESTDATA AFTER TEST. The testdata-
creator class CREATES TESTDATA ON THEFLY.

A typical usage scenario for TESTDATACREATOR could be as follows :

public void testCetPartner{
/1 create test fixture / test setup
TestDataCreator.initialize();
Partner partner = TestDataCreator.createPartner(,John*, ,Doe");
Addr ess address Test Dat aCr eat or. cr eat eAddress(, Street“,
. Sanmpl ecity”, partner);

/1 performtest and check result

assert Equal s(,wong partner“, partner, address.getPartner());
}
/1l see pattern ,Test tearDown“ for nore on this mnethod
public void tearDown(){

Test DataCreator. del eteData(); // delete data created earlier
}

We finally have tested most of our current production code. We would now like to
integrate our code with what the other programmers in the team devel oped today. But
we want to make sure that our tests will also work tomorrow...

RUN AT 100%
Problem How many tests should be successful when integrating?

Forces Unit tests provide their greatest benefit when they are simple to understand.
Thisis particularly true when the results of the unit tests have to be interpreted.
It is easiest to interpret a thumb-up, thumb-down indicator. Either the test was
successful, or it failed. Now, if there are many tests, potentially hundreds, are
the tests successful if 10% failed? Or are they successful if only unimportant
tests failed? How should a developer decide if the system works, given that not
all tests were successful ?

testing_patterns_000601.doc Page 16 of 24

A Unit Testing Pattern Language Peter Gassmann

Solution

Discussion

All tests (=100%) must be successful when integrating code. If it is allowed to
integrate failing tests, the tests will loose their value — namely, simple to
understand feedback - very soon. They will not be trusted anymore. If a
developer starts writing code with tests that are not working at 100%, he can no
longer decide whether atest has failed because of his changes, or whether the
failure was aready there before he started.

This point is actually important at various levels. The thumb-up indicator
serves also as amotivator. Therefore, the more often the thumb is up, the better
the motivation effect. Thisis true on the TESTCASECLASS level (all
TESTMETHODS are successful) and on the ALLTESTS level (all TESTMETHODS in
all invoked TESTCASECLASSes are successful).

We have done a checkout from the central code repository to get all changes done by
the other developers. We have executed all our tests but afew of them did not work
anymore, so we had to fix them. Now we are ready to commit our changes...

RUN BEFORE INTEGRATION

Problem
Forces

Solution

Discussion

When should the tests be executed in the integration process?
As described above in RUN AT 100%, only successful tests should be integrated.

So the typical scenario would be to develop code, then run all tests on the local
machine, and then commit the changes to the central repository.

But what happens if another developer in the meantime integrated code that
does not work (anymore) together with the code to be integrated? The result
would be that the tests in the central repository do not run 100% successfully.

All tests, which means all tests from the central repository plus all new or
changed tests on the local machine, should be run immediately before
integration, in general directly before committing the changes to the central
repository. They have to run at 100%. This requires downloading all changes
made in the central repository since the last integration, before running the
tests.

For a detailed example of an integration process, see [Gassmann2].

It might be necessary to explicitly serialize integration for different developers,
so that no two developers can integrate at the same time. This could be done by
Setting up a separate integration machine, or by using an integration token (for
example a hat). Only the person sitting on the integration machine or having the
integration token may integrate code. If two developers are allowed to integrate
at the same time, this could produce a situation where all tests of each

devel oper were successful, but the resulting combination still leads to failures.

See also High-frequency Integration [Binder99].

testing_patterns_000601.doc Page 17 of 24

A Unit Testing Pattern Language Peter Gassmann

We have now so many tests that we start forgetting to execute some of them to test the

complete system. But as stated in RUN BEFORE INTEGRATION, we have to execute all
our tests successfully before we are allowed to commit. We need away to run all of our tests
automatically...

ALLTESTS
Problem

Forces

Solution

Discussion

U

How can all tests be executed for a set of classes, a subsystem or even the
complete system?

In an average system there will be more than one testclass (in the project
described in [Gassmann] there are well over 100). When testing a component or
the complete system, all testmethods in all testclasses should be executed, one
after the other.

The developer could execute each testclass manually. But in thisway heis
likely to forget one, it will take longer than necessary, and it will not be done
very frequently. In addition, there will be no overall thumbs-up / down sign.

For each logical set of TESTCASECLASSes, an ALLTESTS-class should be
created. The ALLTESTS-class executes all TESTMETHODS in al testclasses
belonging to that set, one after another. The result of executing ALLTESTS
should be a summary of the successes and failures of all tests executed.

ALLTESTS is best implemented using a TEST SUITE.

Typical sets of classes are all TESTCASECLASSes in a TESTPACKAGE. There
should be at least one ALLTESTS in each TESTPACKAGE, which executes all
tests in the respective package. A MAIN-METHOD may be used to start
execution. To test the complete system, an AllAll Tests-class should be created,
whichin turn calls all ALLTESTS-classes of each TESTPACKAGE. Hereis an
example of an ALLTESTS-class for a TEST PACKAGE:

inmport junit.framework.*;
/** Al Tests for this package to call all unit-tests.*/
public class All Tests{

[** start the JUnit QU with this class.*/

public static void main(String[] args){
String[] nyargs = {All Tests.getd ass().getName()};
junit.ui.Test Runner. mai n(nmyargs);

}

/** suite method. */

public static Test suite(){
TestSuite suite = new TestSuite();
sui te. addTest (new Test Sui t e(Addr essModel Test . cl ass));
sui te. addTest (new Test Sui t e(Cont r act Mobdel Test . cl ass));
sui te. addTest (Sear chModel Test. suite());
return suite;

}

}

See also Retest All in [Binder99].

testing_patterns_000601.doc Page 18 of 24

A Unit Testing Pattern Language Peter Gassmann

We have started to write tests for our database layer. Testing code that generates or

accesses persistent data adds another dimension to our tests. The testcode itself looks
still the same, but our tests suddenly fail because the data we exepected to be in the database
for the test was not there anymore after we had to regenerate the database. ..

CREATE TESTDATA ON THE FLY
Problem When should testdata be created which isused in atest?

Forces In tests which access persistent data storage, the data used in the test may be
generated in several ways. One way is to enter the data manually or with a
script into the database before the tests are run. However, if the developer
forgets to enter the data before the test, the tests will fail not because the code
does not work, but because an external dependency was not met. In addition, if
the datais needed in severa tests, and changed during some of them, it would
not be possible to run ALLTESTS, because after the first test changed the data,
the following tests would fail.

If the tests have unstable external dependencies, they will fail from time to time
because of these external dependencies, and not because the code does not
work! If this happens frequently, the devel opers will loose their trust in the unit
tests.

Solution Create testdata on the fly, during the test. Thisway the test has fewer
dependencies on the test environment.

Discussion It might be complicated or even impossible to create testdata during the test. In
these cases, there should be a mechanism that verifies if the expected datais
present, before running the test. Otherwise it would not be immediately clear
whether the tests failed or just a prerequisite for running the tests was not met.

The logic to create testdata may be placed in TESTDATACREATOR. Thislogicis
often invoked from TEST SETUP. When creating testdata on the fly, and storing
the data in the datastorage, it should not be forgotten to CLEANUP DATA AFTER
TEST.

Now that we have fixed the problem with persistent data used in the test, we note that
we can execute our tests only once. What has happened? The data generated during
the test remains in the database and makes the test fail when executed the next time...

CLEANUP TESTDATA AFTER TEST
Problem How can the tests be made repeatable?

Forces If atest makes persistent changes to the test environment, for example inserting
data into a database, the changes could be just |eft there. However, there is the
chance that the test will fail when run the next time, because the test
preparation code cannot insert the testdata a second time. This could happen if
the test requires specific data, which cannot be inserted twice into the database
because of an index that enforces uniqueness.

This would make the test not repeatable, which is one of the most important
properties of unit tests [Beck99][Gassmann].

testing_patterns_000601.doc Page 19 of 24

A Unit Testing Pattern Language Peter Gassmann

Solution After the test, the test environment should be restored to the state before the test
e.g. any changes must be undone.

Discussion Thelogic to delete testdata after execution of the test could be placed in the
TESTDATACREATOR. The call to delete the testdata is best placed in TEST
TEARDOWN, because the TESTRUNNER callSt ear Down even if the test fails.

When testing database access logic, it is often not possible to use the rollback-
mechanism of the database, because a commit is usually required during the
test.

% We have now changed our tests which insert data into the database, for example, as
follows:

public void testCreateAddress(){
Partner partner = new Partner();
partner. set Nane(" Doe");
/'l now we insert the data into the database
/'l creating testdata on the fly . . .
try{
partner. save();
}cat ch(SaveException e){
/1 fail aborts the test.
fail ("unexpected exception in save of partner : "+e);

Addr ess address = new Address();
address. setCity("Sanpl ecity");
addr ess. set Part ner (partner);
try{
address. save();
}cat ch(SaveException e){
/1 fail aborts the test.
fail ("unexpected exception in save of address : "+e);
}
/1 we do sone testing
assert Equal s("address has wong partner", partner, address.getPartner());
/1 we do the clean-up after the test
try{
address. del ete();
partner.del ete();
}cat ch(Del et eException e){
fail ("unexpected exception in delete:"+e);
}

}

The above code applies CLEANUP TESTDATA AFTER TEST at the end of the TESTMETHOD. But
what happens if the insert of the address fails? The partner is already in the database, but the
test is aborted before the cleanup code is executed. To avoid this problem, cleanup code
should be placed in TEST TEARDOWN.

The problem with testdata that remains undeleted during the test was recognized only afew
hours later, and we are a bit worried about that. How can we make sure that we recognize
such problems earlier?

testing_patterns_000601.doc Page 20 of 24

A Unit Testing Pattern Language Peter Gassmann

Run Twice

Problem
Forces

Solution
Discussion

How can be ensured that the tests are repeatabl e?

The system under test might be changed during test execution. Data might be
stored persistently, without beeing cleaned up after the test, caches might be
filled etc. Since these changes in the system might influence the next execution
of the tests, such problems should be detected as soon as possible.

The tests should be run at least twicein arow.

Running the tests twice in arow helps to detect most problems related to caches
and undeleted dataimmediately. And executing the tests twice is usualy still
fast enough to have the developer not wait too long. The TESTRUNNER window
should not be closed between the two runs.

We have now started to test our search logic. But even with CREATE TESTDATA ON
THEFLY we get false hitsin sometests. It seems that there is data in the database
which disturbs the tests, data that has nothing to do with the tests...

NONSENSICAL TESTDATA

Problem
Forces

Solution

Discussion

How can conflicts with unexpected data in the datastorage be avoided?

In a system which stores data persistently, e.g. in adatabase or files, the
datastorage is usually accessed in different scenarios:

* when executing the system (e.g. with aGUI),
* when running the unit tests,
* when running the functional tests.

When executing the system with the GUI, the developer quite often enters data
to seeif and how the system works. This data usually stays in the datastorage.
But some unit tests might expect particular data to be present or not. For
example, when testing search logic, data with specific valid-from and valid-to
dates might be used during the test. But if there is unexpected datain the
database, the tests might fail even if the code works asit should.

For the unit tests, nonsensical test data may be used, e.g. data where thereisa
very low probability that it is present in the database. For example, valid-from
and valid-to dates from the last century could be used.

It is not always possible to use non-sensical data. In these cases, the unit tests
need to take into account the possibility of existing datain the datastorage. This
pattern is particularly useful when testing search-logic.

testing_patterns_000601.doc Page 21 of 24

A Unit Testing Pattern Language Peter Gassmann

We have now consequently applied CREATE TESTDATA ON THE FLY and TEST SETUP

@ for our search logic tests. The search logic tests use read-only access to the database.

There are quite a few test methods, and for each test method alot of dataisinserted in TEST
SETUP and again deleted in TEST TEARDOWN. The result isthat the tests are very slow...

TEST DECORATOR

Problem Often there is code that needs to be executed only once for al TESTMETHODS in
a TESTCASECLASS. Where should this code be placed?

Forces There are some tests which do not need to make changes to persistent data, but
still require persistent data to be present, for example tests for search-logic.
Usually al TESTMETHODS in @ TESTCASECLASS for this kind of logic require
read-only access to the database.

When using the TEST SETUP approach together with CREATE TESTDATA ON THE
FLY, one would insert the testdata into the database before each TESTMETHOD.
However, this makes the tests take longer than necessary. If it takes too long,
the developers will hesitate to start the tests and the main benefit — immediate
feedback — will be lost.

Solution A test-class should be written to wrap (decorate) another testclass. The class
contains set Up and t ear bown. After TESTCASECLASS has executed set Up, the
class executes the TESTMETHODS in the wrapped class using the same execution
scheme as the TESTCASECLASS.

Test Cased ass. runTest s(){
decorator. set Up();
decorator.runTests(){
for all testmethods XXX in testcl ass{
testclass. set Up();

testclass. test XXX();
testcl ass. t ear Down() ;

}
}
decor at or. t ear Down() ;

}

In this way, one can still benefit from applying TEST SETUP and CREATE
TESTDATA ON THE FLY while making the execution of the tests faster.

Discussion [JUnit] contains the classj uni t . ext ensi ons. Test Set up, Which is a subclass of
j uni t. ext ensi ons. Test Decor at or , and which can be used to implement a static
fixture. In the following example, the class Cont r act Test Set up extends

U Test Set up. The methods set Up and t ear Down have been overwritten to
implement test preparation and test cleanup. The setup-classisused in
Contract Test asfollows:

public class Contract Test Setup extends junit.extensions. Test Set up{
/1 setUp and tearDown as in other test-classes

public class Contract Test extends junit.framework. Test Case{
/1 in the testclass the setup-class is used as a w apper
public static TestSuite suite()({
return new Contract Test Set up(new Test Sui te(Contract Test. cl ass));
}

/] test-nmethods omtted

}

A typical scenario for a static fixture is preparing and inserting testdata when
testing search-logic, since these tests require no write-access to the database.

testing_patterns_000601.doc Page 22 of 24

A Unit Testing Pattern Language Peter Gassmann

We have now written many tests for our system. We always started by implementing

the production code, and then we wrote the test code. Sometimes we forgot to write a
test at all, and quite a few times we were not very motivated to write the test after we were
sure that the production code was already working. Even worse, we had a few cases where we
had to change the production code to make it testable! |s something wrong with the order of
development? The next and last pattern is probably the most important of all patterns...

UNIT TEST FIRST
Problem When should the tests be written during development?

Forces Unit tests may be written before, during or after development of the production
code. Writing the tests after development has the disadvantage that the design
of the code to be tested is already fixed. This sometimes leads to problems
because the code might be structured in away which makes testing difficult or
impossible. But even more important is the motivation factor. A developer will
not be very motivated to write atest if he believes the code is already working.
Writing it beforehand is hard for developers, because there is nothing to test
yet.

Writing the tests at the same time as the production code is logically
impossible.

Solution The unit tests should be written, if possible, before the production code. If the
tests are written before the production code is written, the motivation will be to
make the tests run! And if all tests run, the developer knows he has completed
the task.

Discussion Writing the test before the production code has another huge advantage: When
writing a test, the developer is creating the "micro”-design of the system. The
components in a system developed with unit tests before the production code
are less dependent on each other, and the methods communi cate much more
error information, for example via exceptions. Thisis aresult of the , caller-
perspective while writing the tests, instead of the ,,implementor* -perspective
usually taken by developers.

This style of development leads to the following development cycle:
1. Write atest.

2. Implement the production code necessary to make the test run.
3. Runthetest.

This cycleis usually executed many times during a day, often even many times
during an hour of development.

More information can be found in [Beck99], [Wiki] and [Gassmann].

testing_patterns_000601.doc Page 23 of 24

A Unit Testing Pattern Language Peter Gassmann

CONCLUSIONS

The patterns in this pattern language describe how to structure unit tests. They further give
advice on how to structure the development process. Applying the structural patterns makes
the tests better understandable and help to navigate in testcode written by another developer.
Applying the process patterns reduces some of the problems associated with unit tests, and in
the case of UNIT TEST FIRST further improve the benefits of unit testing.

Unit testing frameworks like [JUnit] directly support most of these patterns. The framework
should make it as easy as possible to write and execute unit tests to maximize the benefits
while minimizing the effort necessary.

The patterns are applied with success in the project the author is working on.

ACKNOWLEDGMENTS

The author would like to thank Christa Schwaninger for many valuable suggestions during the
EuroPL oP shepherding process. He would also like to thank Robert H. Gassmann for helping
to improve his english skills. Thanks go to Claudia Chini and Christian Ulmann for their
comments and suggestions. Thanks to Dirk Riehle for his feedback, suggestions and known
uses. Thanks to Frank Westphal for his comments. And finally thanks to Kent Beck for
infecting me with the unit testing virus.

REFERENCES AND FURTHER READING

[Beck99] K. Beck. Extreme Programming explained, embrace change. Reading, MA:
Addison-Wesley, 1999

[Beck94] K. Beck. "Simple Smalltalk Testing: With Patterns”. In The Smalltalk Report 4(2),
October 1994. Available online: http://www.xprogramming.com/software/...

[Binder99] R. Binder. Testing Object-Oriented Systems. Models, Patterns and Tools.
Reading, MA: Addison-Wesley, 1999

[Fowler99] M. Fowler, et al. Refactoring, improving the design of existing code. Reading,
MA: Addison-Wesley, 1999

[Gassmann] P. Gassmann. Unit Testing in a Java Project. March 2000, paper written for the
conference XP2000.

[Gassmann2] P. Gassmann. Development process with VisualAge and vaj2cvs. February
2000. see http://...

[JUnit] K. Beck and E. Gamma. JUnit, Unit testing framework for Java
The testing framework for Java (and other programming languages) can be found under
http://www.xprogramming.com/software.htm

[JR1] K. Beck and E. Gamma. "JUnit: A Cook's Tour.” In Java Report. May 1999

[JR2] K. Beck and E. Gamma. "Test Infected: Programmers Love Writing Tests." In Java
Report. July 1998

[Riehle2000] D. Riehle. "Method Typesin Java'. In Java Report. February 2000.

[Wiki] http://c2.com/cgi/wiki?UnitTests A webpage about unit testing.

Peter Gassmann can be reached at peter.gassmann@acm.org Or at FJA Feilmeier & Junker AG,
Zollikerstrasse 183, 8008 Zurich, Switzerland

Copyright 2000 Peter Gassmann. All rights reserved.
Permission for publication granted for the purposes of EuroPLoP 2000.

testing_patterns_000601.doc Page 24 of 24

