
1.
A Pattern Language for
Reverse Engineering

v0.7 — May 31, 2000 4:49 pm

Preliminary Proceedings of the 5th European Conference on Pattern Lan-
guages of Programming and Computing, 2000, Andreas Rüping (Ed.)

http://win-www.uia.ac.be/u/sdemey/Pubs/Deme00n/

Serge Demeyer(*), Stéphane Ducasse(+), Oscar Nierstrasz(+)

(*) University of Antwerp - LORE - http://win-www.uia.ac.be/u/sdemey/
(+) University of Berne - SCG - http://www.iam.unibe.ch/~scg/

Abstract. Since object-oriented programming is usually associated with iterative develop-
ment, reverse engineering must be considered an essential facet of the object-oriented paradigm.
The reverse engineering pattern language presented here summarises the reverse engineering ex-
perience gathered as part of the FAMOOS project, a project with the explicit goal of investigating
reverse and reengineering techniques in an object-oriented context. Due to limitations on Euro-
PLOP submissions, only part of the full pattern language is presented, namely the patterns describ-
ing how to gain an initial understanding of a software system and one pattern preparing subsequent
reengineering.

This work has been funded by the Swiss Government under Project no. NFS-2000-46947.96 and
BBW-96.0015 as well as by the European Union under the ESPRIT program Project no. 21975
(FAMOOS).

http://win-www.uia.ac.be/u/sdemey/Pubs/Deme00n/

Reverse Engineering Patterns 2.

isap-

 FA-
tly im-

at-
ly to the
low is a
Chapter 1

Reverse Engineering Patterns
1. Introduction
This pattern language describes how to reverse engineer an object-oriented software system.
Reverse engineering might seem a bit strange in the context of object-oriented development, as
this term is usually associated with "legacy" systems written in languages like COBOL and
Fortran. Yet, reverse engineering is very relevant in the context of object-oriented development
as well, because the only way to achieve a good object-oriented design is recognized to be iter-
ative development (see [Booc94a], [Gold95a], [Jaco97a], [Reen96a]). Iterative development
involves refactoring existing designs and consequently, reverse engineering is an essential fac-
et of any object-oriented development process.

The patterns have been developed and applied during the FAMOOS project (http://
www.iam.unibe.ch/~famoos/); a project with had the explicit goal to produce a set of re-engi-
neering techniques and tools to support the development of object-oriented frameworks. Many
if not all of the patterns have been applied on software systems provided by the industrial part-
ners in the project (i.e., Nokia and Daimler-Chrysler). These systems ranged from 50.000 lines
of C++ up until 2,5 million lines of Ada. Where appropriate, we refer to other known uses we
were aware of while writing.

Acknowledgments. We would like to thank our EuroPLoP shepherds Mary Lynn Manns
(2000), Kyle Brown (1999), Kent Beck and Charles Weir (1998) and all participants of the writ-
ers workshops where parts of this language has been discussed. Of course there is also Tim Cox,
our contact person with the publisher: thanks for your patience —we hope we will not d
point you. Next, we thank all participants of the FAMOOS project for providing such a fruitful
working context. And finally, we thank our colleagues in Berne, both in and outside the
MOOS team: by workshopping earlier versions of this pattern language you have grea
proved this manuscript.

2. Clusters of Patterns
The pattern language has been divided into clusters where each cluster groups a number of p
terns addressing a similar reverse engineering situation. The clusters correspond rough
different phases one encounters when reverse engineering a large software system. Be
short description for each of the clusters, while figure 1 provides a road map.

• First Contact. This cluster groups patterns telling you what to do when you have your
very first contact with a software system.

• Initial Understanding. Here, the patterns tell you how to obtain an initial understanding
of a software system, mainly documented in the form of class diagrams.

• Detailed Model Capture. The patterns in this cluster describe how to get a detailed
understanding of a particular component in your software system.

http:/www.iam.unibe.ch/~famoos/
http://www.iam.unibe.ch/~famoos/
http://www.iam.unibe.ch/~famoos/

3.
• Prepare Reengineering. Since reverse engineering often goes together with reengi-
neering, this cluster includes some patterns that help you prepare subsequent reengineer-
ing steps.

Figure 1 Overview of the pattern language using clusters.
Illustrating how the understanding gradually increases with the amount of resources you spend

Resources spent

Sy
st

em
 U

nd
er

st
an

in
g

First Contact
Read all the Code in One Hour
Skim the Documentation
Interview During Demo

Initial Understanding
Speculate about Domain Objects
Reconstruct the Persistent Data
Identify the Largest
Recover the Refactorings

Detailed Model Capture
Derive Public Interface
Step Through the Execution

Prepare Reengineering
Refactor To Understand

First Contact 4.
Chapter 2

First Contact
-- Due to limitations on EuroPLOP submissions, only part of the full pattern

language is presented. Therefore, only the intent sections of the patterns
in this cluster are preserved. We refer the reader the our EuroPLOP99
submission for the full version of the "First Contact" patterns.

Read all the Code in One Hour
Make an initial evaluation of the condition of a software system by walking through its source
code in a limited amount of time.

Skim the Documentation
Make an initial guess at the functionality of a software system by reading its documentation in
a limited amount of time.

Interview During Demo
Obtain an initial feeling for the functionality of a software system by seeing a demo and inter-
viewing the person giving the demo.

5.
Chapter 3

Initial Understanding
The patterns in First Contact should have helped you getting some first ideas about the soft-
ware system. Now is the right time to refine those ideas into an initial understanding and to doc-
ument that understanding in order to support further reverse engineering activities. The main
priority in this stage of reverse engineering is to get an accurate understanding without spend-
ing too much time on the hairy details.

The patterns in this cluster tell you:

• How to extract a domain model from source code (Speculate about Domain Ob-
jects), with one variant concerning pattern extraction (Speculate about Patterns) and
another concerning process architecture extraction (Speculate about Process Archi-
tecture).

• How to extract a class model from a database (Reconstruct the Persistent Data).
• How to identify important chunks of functionality (Identify the Largest).
• How to recognize which refactorings have been applied in the past (Recover the Re-

factorings).

With this information you will probably want to proceed with Detailed Model Capture.

Initial Understanding 6.

es.

 class
e. For
ur expe-

and op-
 have
ith the
g to

s) and
r hy-

rocess

o not
Speculate about Domain Objects
AKA: Map business objects onto classes

Progressively refine a domain model against source code, by defining hypotheses about which
objects should be represented in the system and checking these hypotheses against the source
code.

Problem
You do not know how concepts from the problem domain are mapped onto classes in the
source-code.

Context

You are in the early stages of reverse engineering a software system: you have a rough under-
standing of its functionality and you are somewhat familiar with the main structure of its source
code. You have on-line access to the source code of the software system and the necessary tools
to browse it (i.e., from an elementary grep to a full-fledged code browser). You have reasona-
ble expertise with the implementation language(s) being used.

Solution
Use your expertise to develop a hypothetical class model representing the problem domain. Re-
fine that model by inspecting whether the names in the class model occur in the source code and
by adapting the model accordingly. Repeat the process untill you’re class model stabiliz

Steps
1. With your understanding of the requirements and usage scenarios, develop a

model that serves as your initial hypothesis of what to expect in the source cod
the names of the classes, operations and attributes make a guess based on yo
rience and potential naming conventions (see Skim the Documentation).

2. Enumerate the names in the class model (that is, names of classes, attributes
erations) and try to find them in the the source code, using whatever tools you
available. Take care as names inside the source-code do not always match w
concepts they represent.1 To counter this effect, you may rank the names accordin
the likelihood that they appear in the source code.

3. Keep track of the names which appear in source code (confirm your hypothese
the names which do not match with identifiers in the source code (contradict you
pothesis). Note that mismatches are positive, as these will trigger the learning p
that you must go through when understanding the system.

4. Adapt the class model based on the mismatches. Such adaptation may involve
(a) renaming, when you discover that the names chosen in the source code d

1. In one particular reverse engineering experience, we were facing source code that was a mixture of Eng-
lish and German. As you may expect, this complicates matters a lot.

7. Speculate about Domain Objects

(See

phrases
rf90b]

les up
 a 100
ing a

ng the
stand-
t con-

 code

, de-
match with your hypothesis;
(b) remodelling (@refactoring ?@), when you find out that the source-code representa-
tion of the problem domain concept does not correspond with what you have in your
model. For instance, you may transform an operation into a class, or an attribute into
an operation.
(c) extending, when you detect important elements in the source-code that do not ap-
pear in your class diagram;
(d) seeking alternatives, when you do not find the problem domain concept in the
source-code. This may entail trying synomyms when there are few mismatches but
may also entail defining a completely different class model when there are a lot of mis-
matches.

5. Repeat from step 2 until you obtain a class model that is satisfactory.

Hints

The most difficult step while applying this pattern is the development of an initial hypotheses.
Below are some hints that may help you to come up with a first class model.

• The usage scenarios that you get out of Interview During Demo may serve to define
some use cases that in turn help to find out which objects fulfill which roles.
[Jaco92a] for use cases and [Reen96a] for role modeling.)

• Use the noun phrases in the requirements as the initial class names and the verb
as the initial method names, as suggested in responsibility-driven design (See [Wi
for an in depth treatment.)

Tradeoffs

Pros
• Scale. Speculating about what you’ll find in the source code is a technique that sca

well. This is especially important because for large object-oriented programs (over
classes) it quickly becomes impractical to apply the inverse process, which is build
complete class model from source code and afterwards condensing it by removi
noise. Besides being impractical, the latter approach does not bring a lot of under
ing, because you are forced to focus on the irrelevant noise instead of the importan
cepts.

• Applicability. The pattern is applicable in all situations where you have the source
available.

• Return on Investment. The techniqe is quite cheap in terms of resources and tools
finately when considering the amount of understanding one obtains.

Cons
• Requires Implementation Expertise. A large repertoire of knowledge about idioms,

patterns, algorithms, techniques is necessary to recognize what you see in the source
code. As such, the pattern should preferably be applied by experts in the implementation
language.

Initial Understanding 8.

ept as-
ludes

h-
-

s. Oth-
Difficulties
• Consistency. You should plan to keep the class model up to date while your reverse en-

gineering project progresses and your understanding of the software system grows. Oth-
erwise your efforts will be wasted. If your team makes use of a version control system,
make sure that the class model is controlled by that system too.

Example

...

Rationale

If you Speculate about Domain Objects, you go through a learning process which gains a
true understanding. In that sense, the contradictions of your hypotheses are as important as the
confirmations, because mismatches force you to consider alternative solutions and assess the
pros and cons of these.

Known Uses

In [Murp97a], there is a report of an experiment where a software engineer at Microsoft applied
this pattern (it is called ’the Reflexion Model’ in the paper) to reverse engineer the C-code of Mi-
crosoft Excel. One of the nice sides of the story is that the software engineer was a newcomer
to that part of the system and that his colleagues could not spend too much time to explain him
about it. Yet, after a brief discussion he could come up with an initial hypothesis and then use
the source code to gradually refine his understanding. Note that the paper also includes a de-
scription of a lightweight tool to help specifying the model, the mapping from the model to the
source code and the checking of the code against the model.

The article [Bigg94a] reports several successfull uses of this pattern (it is called the ’conc
signment problem’ in the paper). The authors describe a special tool DESIRE, which inc
advanced browsing facilities, program slicing, prolog-based query language,

Related Patterns

All the patterns in the First Contact cluster are meant to help you in building the initial hypot
esis now to be refined via Speculate about Domain Objects. Afterwards, some of the pat
terns in Detailed Model Capture (in particular, Step Through the Execution) may help you
to improve this hypothesis.

What Next

After this pattern, you will have a class model representing the problem domain concept
er patterns will help you deriving other views on the system, for instance Reconstruct the Per-
sistent Data when you want to learn about the valuable data inside a system, or Identify the
Largest when you want to identify the important functionality, or Recover the Refactorings
when you want to reconstruct the evolution process.

9. Speculate about Domain Objects
Consider to Confer with Colleagues after you did Speculate about Domain Objects, in
order to confirm you results with other findings.

Speculate about Patterns
Like Speculate about Domain Objects, except that you build and refine a hypothesis about
occurances of architectural, analysis or design patterns.

While having Read all the Code in One Hour, you might have noticed some symptoms of
patterns. Knowing which patterns have been applied in the system design may help a lot in un-
derstanding it: for instance a Singleton pattern may point to important system-wide services.
You can use a variant of Speculate about Domain Objects to refine this knowledge. See the
better known pattern catalogues [Gamm95a], [Busc96a], [Fowl97b] for patterns to watch out
for. See also [Brow96c] for a discussion on tool support for detecting patterns.

Example
You are facing a 500 K lines C++ program, implementing a software system to display multi-
media information in real time. Your boss asks you to look at how much of the source code can
be resurrected for another project. After having Read all the Code in One Hour, you noticed
an interesting piece of code concerning the reading of the signals on the external video channel.
You suspect that the original software designers have applied some form of observer pattern,
and you want to learn more about the way the observer is notified of events. You will read the
source code and trace interesting paths, this way gradually refining your assumption that the
class "VideoChannel" is the subject being observed.

Speculate about Process Architecture
Like Speculate about Domain Objects, except that you build and refine a hypothesis about
the interacting processes in a distributed system.

The object-oriented paradigm is often applied in the context of distributed systems with multi-
ple cooperating processes. A variant of Speculate about Domain Objects may be applied
to infer which processes exist, how they are launched, how they get terminated and how they
interact. (See [Lea96a] for some typical patterns and idioms that may be applied in concurrent
programming.)

Initial Understanding 10.
Reconstruct the Persistent Data
Recover objects that are so valuable that they are stored in a database system.

Problem

You do not know which objects are critical for the functioning of the system, i.e. that are so vital
that they must persist across different executions of your system and require special care in
terms of back-up procedures and concurrency control.

Context

You are in the early stages of reverse engineering a software system, having a rough under-
standing of its functionality. The software system employs some form of a database to make its
data persistent.

You have access to the database and the proper tools to inspect its schema and obtain samples
of data. Besides, you have some expertise with databases and knowledge of how data-struc-
tures from your implementation language are mapped onto the data-structures of the underly-
ing database.

Solution

Check the entities that are stored in the database, as these most likely represent valuable ob-
jects. Derive a class model representing those entities to document that knowledge for the rest
of the team.

Steps

The steps below assume you start with a relational database, which is quite a typical situation
with object-oriented systems. If you have another kind of database system, some of these steps
may still be applicable.

Note that steps 1-3 are quite mechanical and can be automated quite easily.

1. Collect all table names and build a class model, where each table name corresponds to
a class name.

2. For each table, collect all column names and add these as attributes to the correspond-
ing class.

3. Collect all foreign keys relationships between tables and draw an association between
the corresponding classes. (If the foreign key relationships are not maintained explic-
itly in the database schema, then you may infer these from column types and naming
conventions.)

After the above steps, you will have a class model that represents the entities being stored in the
relational database. However, because relational databases cannot represent inheritance rela-
tionships, there is still some cleaning up to do. (The terminology for the three representations
of inheritance relations in steps 4-6 stems from [Fros94a].)

11. Reconstruct the Persistent Data
4. Check tables where the primary key also serves as a foreign key to another table, as
this may be a "one to one" representation of an inheritance relationship inside a rela-
tional database. Examine the SELECT statements that are executed against these ta-
bles to see whether they usually involve a join over this foreign key. If this is the case,
transform the association that corresponds with the foreign key into an inheritance re-
lationship. (see figure 2 (a)).

5. Check tables with common sets of column definitions, as these probably indicate a sit-
uation where the class hierarchy is "rolled down" into several tables, each table repre-
senting one concrete class. Define a common superclass for each cluster of duplicated
column definitions and move the corresponding attributes inside the new class. To
name the newly created classes, you can use your imagination, or better, check the
source code for an applicable name. (see figure 2 (b))

6. Check tables with many columns and lots of optional attributes as these may indicate
a situation where a complete class hierarchy is "rolled up" in a single table. If you have
found such a table, examine all the SELECT statements that are executed against this
table. If these SELECT statements explicitly request for subsets of the columns, then
you may break this one class into several classes depending on the subsets requested
(see figure 2 (c))

Figure 2 Mapping a series of relational tables onto an inheritance hierarchy.
(a) one to one; (b) rolled down; (c) rolled up

Person
id: ObjectID
name: String
address: String

Student
studentNr: Integer
class: String

Teacher
salary: Real

Person
id: ObjectID
name: String
address: String

Student
id: ObjectID
studentNr: Integer
class: String

Teacher
id: ObjectID
salary: Real

Inheritance Hierarchy
Tables with foreign key relationships

Student
id: ObjectID
name: String
address: String
studentNr: Integer
class: String

Teacher
id: ObjectID
name: String
address: String
salary: Real

Tables with common column definitions

Person
id: ObjectID
name: String
address: String
studentNr: Integer <<optional>>
class: String<<optional>>
address: String<<optional>>
salary: Real<<optional>>
address: String<<optional>>
salary: Real<<optional>>

Large table with many optional columns

(a)

(b)
(c)

Initial Understanding 12.

mu-
d with
eople
resent,

 the
hat this

s, it
attern
When you have incorporated the inheritance relationships, consider to improve the class model
exploiting the presence of the legacy system as a source of information. In particular you can ...

-- say something about data sampling and run-time inspection
-- say something about locating mapping code in the system itself

Tradeoffs

Pros
• Team communication. By capturing the database schema you will improve the com

nication within the reverse engineering team and with other developers associate
the project (in particular the maintenance team). Moreover, many if not all of the p
associated with the project will be reassured by the fact that the data schema is p
because lots of development methodologies stress the importance of the data.

• Model of critical information. The database usually contains the critical data, hence
need to model it because whatever future steps you take you should guarantee t
critical data is maintained.

Cons
• Limited Scope. Although the database is crucial in many of today’s software system

involves but a fraction of the complete system. As such, you cannot rely on this p
alone to gain a complete view of the system.

• Requires Database Expertise. The pattern requires a good deal of knowledge about he
underlying database plus constructs to map the database schema into the implementation
language. As such, the pattern should preferably be applied by people having expertise
in mappings from the chosen database to the implementation language.

Difficulties
• Polluted Database Schema. The database schema itself is not always the best source of

information to reconstruct a class model for the valuable objects. Many projects must op-
timize database access and as such often sacrifice a clean database schema. Also, the da-
tabase schema itself evolves over time, and as such will slowly detoriate. Therefore, its
is quite important to refine the class model using data sampling and run-time inspection.

Example
You are asked to extend an existing database application so that it will be accessible via the
world-wide web. The initial software system manipulates the business objects (implemented in
C++) stored inside a relational database. You will reconstruct the data model underlying your
business objects by mapping the table definitions in the database on the corresponding C++
classes.

Rationale

Having a well-defined central database schema is a common practice in larger software
projects that deal with persistent data. Not only does it specify common rules on how to access

13. Reconstruct the Persistent Data
certain data structures, it is also a great aid in dividing the work between team members. There-
fore, it is a good idea to extract an accurate data model before proceeding with other reverse en-
gineering activities.

Known Uses
The reverse engineering and reengineering of database systems is a well-explored area of re-
search (see among others [Hain96a], [Prem94a], [Jahn97b]). Note the recurring remark that the
database schema alone is too weak a basis and that data sampling and run-time inspection must
be included for successful reconstruction of the data model.

• Data sampling. Database schemas only specify the constraints allowed by the underly-
ing database system and model. However, the problem domain may involve other con-
straints not expressed in the schema. By inspecting samples of the actual data stored in
the database you can infer other constraints.

• Run-time inspection. Tables in a relational database schema are linked via foreign
keys. However, it is sometimes the case that some tables are always accessed together,
even if there is no explicit foreign key. Therefore, it is a good idea to check at run-time
which queries are executed against the database engine.

Related Patterns
Reconstruct the Persistent Data requires an initial understanding of the system functionali-
ty, as obtained by applying patterns in the cluster First Contact.

There are some idioms, patterns and pattern languages that describe various ways to map ob-
ject-oriented data constructs on relational database counterparts. See among others [Kell98a],
[Cold99a].

What Next

Reconstruct the Persistent Data results in a class model for the persistent data in your soft-
ware system. Such a data model is quite rough, but it may serve as an ideal initial hypotheses to
be further refined by applying Speculate about Domain Objects. The data model should
also be used as a collective knowledge that comes in handy when doing further reverse engi-
neering efforts, for instance like in the clusters Detailed Model Capture and Prepare Reen-
gineering. Consequently, consider to Confer with Colleagues after Reconstruct the
Persistent Data.

Initial Understanding 14.
Identify the Largest
Identify important code by using a metrics tool and inspecting the largest constructs.

Problem

You do not know where the important code is located in the million lines of source code you are
facing.

Context

You are in the early stages of reverse engineering an object-oriented software system, having a
rough understanding of its functionality. You have a metrics tool and a code browser at your dis-
posal.

Solution

Use the metrics tool to collect a limited set of measurements concerning the constructs inside
the software system (i.e., the inheritance hierarchy, the packages, the classes and the methods).
Display the results in such a way that you can easily assess different measurements for the same
construct. Browse the source code for the large or exceptional constructs to determine whether
the construct represents important functionality.

Steps

The following steps provide some heuristics to identify important functionality using metrics.

1. Identify large inheritance hierarchies.

As inheritance is the most commonly used modelling concept in object-oriented sys-
tems it is a good idea to identify the largest subtree in the inheritance hierarchy as po-
tential candidates for providing important functionality. To do this, compile a list of
classes with the metrics Number of Descendant Classes — NDC and Hierarchy
Nesting Level — HNL as the main indicators, and Number of Methods for Class —
NOM plus Number of Attributes for Class — NOA as secondary indicators. Sort the
list according the main indicators to identify those classes at the root or at the bottom
of the large inheritance hierarchies (see Table 1).

2. Classes.

NDC HNL NOM, NOA

(a) root of large
inheritance hierarchy

large small (~= 0) Large values indicate a
lot of impact on the
subclasses.

(b) leaves of large
inheritance hierarchy

small (~= 0) large Small values indicate a
lot of impact from the
parent classes.

Table 1: Identify large inheritance hierarchies.

15. Identify the Largest
Classes represent the unit of encapsulation in an object-oriented system, hence it is
worthwhile to identify the most important ones. To do this, compile a list of classes
with the metric Lines of Code for Class — WNOM (LOC) as main indicator and
Number of Methods for Class — NOM plus Number of Attributes for Class —
NOA as secondary indicator. Sort the list according to each of the criteria and inspect
to top ten of each of them. Also, look for classes where the measurements do not cor-
relate like the other classes in the system, they represent classes with exceptionally
high or low values and are probably worthwhile to investigate further (see Table 2).

3. Methods.
...

Hints

Identifying important pieces of functionality in a software system via measurements is a deli-
cate activity which requires expertise in both data collection and interpretation. Below are
some hints you might consider to get the best out of your data.

• Which metrics to collect? In general, it is better to stick to the simple metrics, as the
more complex ones involve more computation, yet will not perform better for the iden-
tification of large constructs.
For instance, to identify large methods it is sufficient to count the lines by counting all
carriage returns or newlines. Most other method size metrics require some form of pars-
ing and this effort is usually not worth the gain.

• Which metric variants to use? Usually, it does not make a lot of difference which met-
ric variant is chosen, as long as the choice is clearly stated and applied consistently. Here
as well, it is preferable to choose the most simple variant, unless you have a good reason
to do otherwise.
For instance, while counting the lines of code, you should decide whether to include or
exclude comment lines, or whether you count the lines after the source code has been
normalised via pretty printing. However, when looking for the largest structures it usu-
ally does not pay off to do the extra effort of excluding comment lines or normalizing the
source code.

• What about coupling metrics? Part of what makes a piece of code important is how it
is used by other parts of the system. Such external usage may be revealed by applying
coupling metrics. However, coupling metrics are usually quite complicated, thus go
against our principle of choosing simple metrics. Moreover, there is no consensus in the
literature on what constitute "good" coupling metreics. Therefore, we suggest not to rely
on coupling metrics. If your metrics tool does not include any coupling metrics you can

WNOM(LOC) NOM NOA

(a) large code size large Uncorrelated with WNOM(LOC)

(b) many methods Uncorrelated with NOM large Uncorrelated with NOM

(c) many attributes Uncorrelated with NOA Uncorrelated with NOA large

Table 2: Identify large classes.

Initial Understanding 16.
safely ignore them. Otherwise it is better to calculate them after you have identified some
large constructs.

• Which thresholds to apply? Due to the need for reliability, it is better not to apply
thresholds.1 First of all, because selecting threshold values must be done based on the
coding standards applied in the development team and these you do not necessarily have
access to. Second, because "large" is a relative notion and thresholds will distort your
perspective of what constitutes "large" within the system as you will not know how many
"small" constructs there are.

Note that many metric tools include some visualisation features to help you scan large
volumes of measurements and this is usually a better way to quickly focus on important
constructs.

• How to interpret the results? Large is not necessarily the same as important, so care
must be taken when interpreting the measurement data. To assess whether a construct is
indeed important, it is a good idea to simultaneously inspect different measurements for
the same construct. For instance, combine the size of the class with the number of sub-
classes, because large classes that appear high in a class hierarchy are usually important.

However, formulas that combine different measurements in a single number should be
avoided as you loose the sense for the constituting elements. Therefore it is better to
present the results in a table, where the first column shows the name of the construct, and
the remaining columns show the different measurement data. Sorting these tables ac-
cording to the different measurement columns will help you to identify extreme values.

• Should I browse the code afterwards? Measurements alone cannot determine whether
a construct is truly important: some human assessment is always necessary. However,
metrics are a great aid in quickly identifying constructs that are potentially important and
code browsing is necessary for the actual evaluation. Note that large constructs are usu-
ally quite complicated, thus understanding the corresponding source code may prove to
be difficult.

• What about small constructs? Small constructs may be far more important than the
large ones, because good designers tend to distribute important functionality over a
number of highly reusable and thus smaller components. Conversely, large constructs are
quite often irrelevant as truly important code would have been refactored into smaller
pieces. Still, different larger constructs will share the important smaller constructs, thus
via the larger constructs you are likely to identify some important smaller constructs too.
Anyway, you should be aware that you are only applying a heuristic: there will be im-
portant pieces of code that you will not identify via this pattern.

Example

....

1. Most metric tools allow you to focus on special constructs by specifying some threshold interval and
then only displaying those constructs where the measurements fall into that interval.

17. Identify the Largest

se the
 dif-
) one
 func-

you
e that

must
ed tu-

se they
w in-
ia code

 helps
98b],
ent to
to as-

data,
d data.
hib-

 By in-
ce, if
 in par-

entify-
Tradeoffs

Pros
• Scale. The technique is readily applicable to large scale systems, mainly becau

metrics tool typically returns 20% of the constructs for further investigation. When
ferent metrics are combined properly (preferably using some form of visualisation
can deduce quite rapidly which parts of the system represent important chunks of
tionality.

Cons
• Inaccurate. Quite a lot of the constructs will turn out not to be important and this

will only know after you analysed the source code. Moreover, there is a good chanc
you will miss important functionality.

Difficulties
• Interpretation of data. To really assess the importance of a code construct, you

collect several measurements about it. Interpreting and comparing such multi-valu
ples is quite difficult and requires quite a lot of experience.

Rationale
The main reason why size metrics are often applied during reverse engineering is becau
provide a good focus (between 10 to 20/% of the software constructs) for a relatively lo
vestment. The results are somewhat unreliable, but this can easily be compensated v
browsing.

Known Uses
In several places in the literature it is mentioned that looking for large object constructs
in program understanding (see among others, [Mayr96a], [Kont97a], [Fior98a], [Fior
[Mari98a], [Lewe98a], [Nesi98a]). Unfortunately, none of these incorporated an experim
count how much important functionality remains undiscovered. As such it is impossible
sess the reliability of size metrics for reverse engineering.

Note that some metric tools visualise information via typical algorithms for statistical
such as histograms and Kiviat diagrams. Visualisation may help to analyse the collecte
Datrix [Mayr96a], TAC++ [Fior98a], [Fior98b], and Crocodile [Lewe98a] are tools that ex
it such visualisation features.

Related Patterns
Looking at large constructs requires little preparation but the results are a bit unreliable.
vesting more in the preparation you may improve the reliability of the results. For instan
you invest in program visualisation techniques you can study more aspects of the system
allel, thereby increasing the quality of the outcome. Also, you can Recover the Refactorings
to focus on those parts of the system that change, thereby increasing the likelihood of id
ing interesting constructs and focussing on the way constructs work together.

Initial Understanding 18.
What Next

By applying this pattern, you will have identified some constructs representing important func-
tionality. Some other patterns may help you to further analyse these constructs. For instance, if
you ..., you will obtain other perspectives and probably other insights as well. Also, if you Step
Through the Execution you will get a better perception of the run-time behaviour. Finally, in
the case of a object-oriented code, you can Derive Public Interface to find out how a class is
related to other classes.

Even if the results have to be analysed with care, some of the larger constructs can be candidates
for further reengineering: large methods may be split into smaller ones (see [Fowl99a]), just
like big classes may be cases of a God Class.

19. Recover the Refactorings

 of its
trics tool

ind con-

at have
d ask
Recover the Refactorings
Reconstruct the iterative design process by comparing subsequent releases and measuring de-
creases in size, as such recover ing refactorings like they have been applied in the past.

Problem

You want to recover what the original developers learned during an iterative development proc-
ess.

Context

You are in the early stages of reverse engineering a software system that has been developped
via an iterative development process, hence changed quite often during its lifetime. You have
an overall understanding of the system’s functionality and you know the main structure
source code. You have several versions of the source code at your disposal plus a a me
to detect the differences between the releases.

Solution

Use the metrics tool to compare the measurements of two subsequent releases and f
structs that decrease in size, thus where functionality has been removed. Find out whether this
functionality has been moved to another location, and as such recover the refactorings th
been applied. For each refactoring, put yourself in the role of the original developer an
yourself what the change is about and why it was necessary.

Hints

We can recommend three heuristics to help you identifying the following refactorings.

• Split into superclass / merge with superclass. Look for the creation or removal of a
superclass (change in Hierarchy Nesting Level — HNL), together with a number of pull-
ups or push-downs of methods and attributes (changes in Number of Methods for Class
— NOM and Number of Attributes for Class — NOA).

• Split into subclass / merge with subclass. Look for the creation or removal of a sub-
class (change in Number of Immediate Subclasses — NIS), together with a number of

S

T

S’

Z

T’

S

T

Split T into Z and T’
(delta_HNL(T’) > 0) and

((delta_NOM(T') < 0) or (delta_NOA(T') < 0))

Merge Z and T’ into T
(delta_HNL(T) < 0) and

((delta_NOM(T) > 0) or (delta_NOA(T) > 0))

Initial Understanding 20.
pull-ups or push-downs of methods and attributes (changes in Number of Methods for
Class — NOM and Number of Attributes for Class — NOA).

• Move functionality to superclass, subclass or sibling class. Look for removal of
methods and attributes (decreases in Number of Methods for Class — NOM and
Number of Attributes for Class — NOA) and use code browsing to identify where this
functionality is moved to.

• Split method / factor out common functionality. Look for decreases in method size
(via Lines of Code for Method —LOC, or Number of Invocations for Method —

S

T

Split S into Z and S’
(delta_NIS(S’) <> 0) and

((delta_NOM(S') < 0) or (delta_NOA(S') < 0))

Merge Z and S’ into S
(delta_NIS(S) <> 0) and

((delta_NOM(S) > 0) or (delta_NOA(S) > 0))

U

S’

T’ U’ Z

Z

T’ U’

S’

S

T U

S

T

U

Move from T to S, U or V
((delta_NOM(T’) < 0) or (delta_NOA(T’) < 0))

and (delta_HNL(T’) = 0) and (delta_NIS(T’) = 0)

V

S’

T’

U’

V’

21. Recover the Refactorings

here
erly-

 as-

s

well
men-

m-
parison

n the

ame
 data
NOI, or Number of Statements for Method — NOS) and try to identify where that
code has been moved to.

Tradeoffs

Pros

• Concentrates on relevant parts, because the changes point you to those places w
the design is expanding or consolidating and this in turn provides insight in the und
ing design intentions.

• Provides an unbiased view of the system, because you do not have to formulate
sumptions of what to expect in the software (this is in contrast to Speculate about Do-
main Objects and Reconstruct the Persistent Data)

• Extracts the interaction protocol, because finding redistributed functionality involve
inspection of method invocations (this is in contrast to Derive Public Interface).

Cons

• Requires considerable experience, in the sense that the reverse engineer must be
aware of how the refactorings interact with the coding idioms in the particular imple
tation language.

• Considerable tool support is required, especially (a) a metrics tool that is able to co
pare different releases or otherwise export its measurements to a separate com
tool; (b) a code browsers that is able to inspect polymorphic method invocations.

Difficulties

• Imprecise for many changes, because when too many changes have been applied o
same piece of code, it becomes difficult to reconstruct the refactorings.

• Sensitive to renaming if one identifies classes and methods via their name. Then ren
operations will show up as removals and additions which makes interpreting the
more difficult.

Example

...

Split S.m into S’.m and S’.n
(delta_LOC(S’.m) < threshold)

S
m()

S.m() {
...
x();
y();
...}

S’
m()
n()

S’.m() {
...
this.n();
...}

S’.n() {
x(); y();}

Initial Understanding 22.

ported
ineering

ystem.
es.

y role
se con-
hts as
e

Rationale
Many object-oriented systems came into being via a combination of iterative and incremental
development (see [Booc94a], [Gold95a], [Jaco97a], [Reen96a]). That is, the original develop-
ment team recognised their lack of problem domain expertise and therefore invested in a learn-
ing process where each learning phase resulted in a new system release. It is worthwhile to
reconstruct that learning process because it will help us to understand the intentions embodied
inthe system design.

One way to reconstruct the learning process is to recover its primitive steps. In object-oriented
parlance, these steps are called refactorings and consequently this pattern tells you how to re-
cover refactorings like they have been applied in the past. The technique itself compares two
subsequent releases of the source code identifying constructs that decrease in size, because
that’s the typical symptom of functionality that has been moved elsewhere.

Known Uses
We ran an experiment on three medium sized systems implemented in Smalltalk. As re
in [Deme00a], these case studies suggest that the heuristics support the reverse eng
process by focussing attention on the relevant parts of a software system.

Related Patterns
Inspecting changes is a costly but very accurate way of identifying areas of interest in a s
If you Identify the Largest you will get less accurate results for a lower amount of resourc

What Next

By applying this pattern, you will have identified some parts in the design that played a ke
during the system's evolution. Some other patterns may help you to further analyse the
structs. For instance, if you ... you will obtain other perspectives and probably other insig
well. Also, if you Step Through the Execution you will get a better perception of the run-tim
behaviour. Finally, in the case of a class, you can Derive Public Interface to find out how this
class is related to other classes.

23. Recover the Refactorings
Chapter 4

Detailed Model Capture
-- Due to limitations on EuroPLOP submissions, only part of the full pattern

language is presented. Therefore, only the intent sections of the patterns
in this cluster are preserved. The full versions of these patterns will appear
later.

Derive Public Interface
Find out how a class is related to other classes by checking the invocations of key methods in
the interface of that class. Two examples of key methods that are easy to recognise are construc-
tors and overridden methods.

Step Through the Execution
Obtain a detailed understanding of the run-time behaviour of a piece of code by stepping
through its execution.

Prepare Reengineering 24.
Chapter 5

Prepare Reengineering
-- Due to limitations on EuroPLOP submissions, only part of the full pattern

language is presented. Therefore, only one of the patterns is fully
expanded and for the remaining ones only the intent sections are
preserved. The full versions of these patterns will appear later.

Write the Tests
Record your knowledge about how a component reacts to a given input in a number of black box
tests, this way preparing future changes to the system.

Build a Prototype
Extract the design of a critical but cryptic component via the construction of a prototype which
later may provide the basis for a replacement.

Wrap the Unimportant
Wrap the parts you consider unnecessary for the future reengineering in a black box compo-
nent.

Refactor To Understand

25. Recover the Refactorings
Chapter 6Obtain better understanding of a specific piece of code by iterative

refactoring and renaming.

Miscellaneous

Confer with Colleagues
Share the information obtained during each reverse engineering activity to boost the collective
understanding about the software system.

God Class
... (see [Brow98a])

List of Metrics 26.

meth-

d (as
Chapter 7

List of Metrics
3. Class Size Metrics

Number of Methods for Class — NOM

Count the number of methods in a class.

Variants
• Include or not include private, protected, public
• Include or not the methods defined on class level instead of object level (i.e. static

ods in C++, Jave; class methods in Smalltalk)
• Include or not the constructors

Number of Attributes for Class — NOA

Count the number of methods in a class.

Variants
• Include or not include private, protected, public

Lines of Code for Class — WNOM (LOC)

Count the lines of code for the complete class definition.

The abbreviation WNOM (LOC) stems from "Weighted Number of Methods, summing Lines
of Code per Method".

Variants
• Before or after formatting
• Including or exclusing comment-lines
• Including the class definition itself, or just the sum of all lines of code per metho

suggested by the abbreviation)

4. Method Size Metrics

Number of Invocations for Method — NOI

Count the number of methods invoked in a method body.

27. Recover the Refactorings
Variants
• Include or exclude special invocations, such as operators, procedure calls

Lines of Code for Method —LOC

Count the lines of code in the method body.

Variants
• Before or after formatting

• Including or exclusing comment-lines

Number of Statements for Method — NOS

Count the number of statements in the method body.

Variants
• Before or after formatting

• Including or exclusing comment-lines

5. Inheritance Metrics

Hierarchy Nesting Level — HNL

Number of superclasses in the longest superclass chain.

Variants
• Include or exclude default roots (i.e., Object in Smalltalk, ...)

Number of Immediate Subclasses — NIS

Number of immediate subclasses.

Variants
• Include or exclude private/protected subclasses

Number of Descendant Classes — NDC

Number of descendant classes, thus total number of all subclasses for a class.

Variants
• Include or exclude private/protected subclasses

References 28.

n in

w-

Stad,

ss In-

ia

.

g:

pp.43-

s, Add-

orks

e En-
, no.

riented
ead-

ACM

ets as
EC/

n-
Bush-
Chapter 8

References
[Bigg94a] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster, "Program Understanding

and the Concept Assignment Problem", Communications of the ACM, Vol. 37(5), May 1994.

[Booc94a] Grady Booch, Object Oriented Analysis and Design with Applications (2nd edition), The
Benjamin Cummings Publishing Co. Inc., 1994.

[Brow96c] Kyle Brown, “Design Reverse-Engineering and Automated Design Pattern Detectio
Smalltalk,” Ph.D. thesis, North Carolina State University, 1996.

[Brow98a] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III and Thomas J. Mo
bray, “AntiPatterns,” 1998.

[Busc96a] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael
Pattern-Oriented Software Architecture — A System of Patterns, John Wiley, 1996.

[Cold99a] Jens Coldewey, Wolfgang Keller and Klaus Renzel, Architectural Patterns for Busine
formation Systems, Publisher Unknown, 1999, To Appear.

[Deme00a] Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz, “Finding Refactorings v
Change Metrics,” OOPSLA’2000 Proceedings, to appear

[Fior98a]

[Fior98b]

[Fowl97b] Martin Fowler, Analysis Patterns: Reusable Objects Models, Addison-Wesley, 1997

[Fowl99a] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refactorin
Improving the Design of Existing Code, Addison-Wesley, 1999.

[Fros94a] Stuart Frost, "Modeling for the RDBMS legacy", Object Magazine, September 1994,
51.

[Gamm95a] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Pattern
ison Wesley, Reading, MA, 1995.

[Gold95a] Adele Goldberg and Kenneth S. Rubin, Succeeding With Objects: Decision Framew
for Project Management, Addison-Wesley, Reading, Mass., 1995.

[Hain96a] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick and D. Roland, “Database revers
gineering: From requirements to CARE Tools,” Automated Software Engineering, vol. 3
1-2, June 1996.

[Jaco92a] Ivar Jacobson, Magnus Christerson, Patrik Jonsson and Gunnar Overgaard, Object-O
Software Engineering — A Use Case Driven Approach, Addison-Wesley/ACM Press, R
ing, Mass., 1992.

[Jaco97a] Ivar Jacobson, Martin Griss and Patrik Jonsson, Software Reuse, Addison-Wesley/
Press, 1997.

[Jahn97b] Jens. H. Jahnke, Wilhelm. Schäfer and Albert. Zündorf, “Generic Fuzzy Reasoning N
a Basis ofr Reverse Engineering Relational Database Applications,” Proceedings of ES
FSE'97, LNCS, no. 1301, 1997, pp. 193-210.

[Kell98a] Wolfgang Keller and Jens Coldewey, “Accessing Relational Databases: A Pattern La
guage,” Pattern Languages of Program Design 3, Robert Martin, Dirk Riehle and Frank
mann (Eds.), pp. 313-343, Addison-Wesley, 1998.

29. Recover the Refactorings

e
emey-

y,”

 of
49.

od,

d
[Kont97a]

[Lea96a] Doug Lea, Concurrent Programming in Java, Design Principles and Patterns, Addison-Wes-
ley, The Java Series, 1996.

[Lewe98a]

[Mari98a] Radu Marinescu, “Using Object-Oriented Metrics for Automatic Design Flaws in Larg
Scale Systems,” Object-Oriented Technology (ECOOP'98 Workshop Reader), Serge D
er and Jan Bosch (Eds.), LNCS 1543, Springer-Verlag, 1998, pp. 252-253.

[Mayr96a]

[Murp97a] Gail Murphy and David Notkin, “Reengineering with Reflexion Models: A Case Stud
IEEE Computer, vol. 8, 1997, pp. 29-36.

[Nesi98a]

[Prem94a] William J. Premerlani and Michael R. Blaha, “An Approach for Reverse Engineering
Relational Databases,” Communications of the ACM, vol. 37, no. 5, May 1994, pp. 42-

[Reen96a] Trygve Reenskaug, Working with Objects: The OOram Software Engineering Meth
Manning Publications, 1996.

[Wirf90b] Rebecca Wirfs-Brock, Brian Wilkerson and Lauren Wiener, Designing Object-Oriente
Software, Prentice Hall, 1990.

	A Pattern Language for Reverse Engineering
	Reverse Engineering Patterns
	1. Introduction
	2. Clusters of Patterns

	First Contact
	Initial Understanding
	Speculate about Domain Objects
	Reconstruct the Persistent Data
	Identify the Largest
	Recover the Refactorings

	Detailed Model Capture
	Prepare Reengineering
	Miscellaneous
	List of Metrics
	3. Class Size Metrics
	4. Method Size Metrics
	5. Inheritance Metrics

	References

