
1 June 2000
Patterns for Architectural
Praxis

Alan O’Callaghan
Software Technology Research Laboratory
De Montfort University
The Gateway
LEICESTER LE1 9BH
United Kingdom
aoc@dmu.ac.uk
http://www.cse.dmu.ac.uk/~aoc/

A submission to EuroPlop ‘2000, Irsee,
Germany

Introduction

The patterns presented below extend the ADAPTOR (Architectural and Patterns-
based Techniques for Object Re-engineering) patterns for migrating large-scale
legacy systems to object and component-based architectures. ADAPTOR emerged
out of work which began, in collaboration with British Telecom, in 1993. The
lessons learned were first crafted in the form of patterns from about 1995-6 and then,
as a result of work on five separate projects in different business areas, they began
to be systematized in the form of a pattern language - as opposed to a catalogue of
1

Introduction
‘standalone’ patterns - from 1998. Subsets of the ADAPTOR patterns have been
publicly aired at various conferences internationally, including of course EuroPlop
‘99 when four patterns were reviewed in the pattern writers’ workshops. Wider
exposure has been given to the overall approach (notably at Object Expo in London
in 1996, OOPSLA in Denver in 1999 , and Component Computing 2000 in
Stockholm) as well as in the bi-monthly column on Legacy System migration that
Alan O’Callaghan writes for Application Development Advisor. It has always been
clear that the approach represented by ADAPTOR is very different from that of
traditional reverse engineering. This is not primarily because of its use of patterns,
but rather its focus on human-centred as opposed to formal methods, and because of
its treatment of legacy systems as ‘living history’ rather than archaeology (See for
example, [O’Callaghan 1996]. In the course of the public discussion that has ensued
the intriguing question has often been raised that, given its distance from traditional
reverse-engineering, how close is the ADAPTOR approach to ‘forward
engineering’?

On reflection there appears to be a deeper connection between ADAPTOR
considered as a re-engineering approach and software architecture more generally
(i.e. including Software Architecture for so-called greenfield development). Perhaps
it is the case that the more constrained environment imposed by the special context
of legacy systems highlighted some fundamental aspects of software development
that are true for most, if not all, development projects - not just those of legacy
systems. ADAPTOR relies on a model-driven approach in which typically three
kinds of object model are built: problem space models (to understand the ‘business
need’ the proposed software solution is designed to meet), solution space models
(models of the software solution itself), and specification models designed to map
between the two. Incidentally models do not neccessarily imply diagrams in the
ADAPTOR approach. UML diagrams can be used, and are used, when they aid
communication, in which case they are regarded as views on the model under scope.
But often more informal drawings (e.g., on a whiteboard), CRC card sets, or the
minutes of brainstorming sessions can serve equally well in representing these
models as they evolve These same three kinds of models, and their associated
views, are also used by us in, for example, forward engineering component-based
development projects and so are clearly not specific to legacy system migration.
More importantly some of the ADAPTOR patterns, though initially discovered in
the context of legacy system migration, have a wider potential application also.

THE JANUS PROJECT These intriguing developments have given rise to a project currently known as
Janus. Janus is an attempt to describe a generalised praxis of software architecture
that applies to both greenfield development and to legacy system migration. Janus is
the Roman God who had two faces, one looking forward another looking backward.
The metaphor, besides reflecting the unity between the re-engineering (backward-
looking) patterns and forward engineering (forward-looking) patterns also suggests
strongly our intuition that Software Architecture itself looks simultaneously to the
Problem Space and the Solution Space, thus providing the conceptual integrity
throughout a software development project. The work on Janus is proceeding in
parallel with the continuing work on the ADAPTOR pattern language, which can be
regarded as a subset of it.

The three patterns presented below are representative of ADAPTOR patterns that
have an applicability that goes beyond legacy system redevelopment and thus gave
rise to the Janus project. ADAPTOR is itself an evolving, open pattern language that
besides presenting patterns newly discovered in, to date, eight separate projects in
three different industrial sectors freely makes use of other pattern catalogues and
2 Patterns for Architectural Praxis

Introduction
pattern languages in the public domain. It also uses different kinds of patterns that
together reflect the different aspects of architectural knowledge as we see it. Based
on research of the role of architects in the built environment [O’Callaghan 2000], we
posit that architectural knowldge includes at least the following facets:

• Ability to design
• Understanding of the ways in which user requirements impact upon design
• Capacity to lead the procurement and construction processes

As a result ADAPTOR embraces many different kinds of patterns. The three patterns
below are each of a different such category: Keeper of the Flame is a role pattern
which reflects organisation and process issues; Mile-Wide, Inch Deep is a pattern
which refelects a philosophy of construction (and is similar in character to
Alexander’s Gradual Stiffening [Alexander 1977]) while Archetype is a pattern
which reveals a technique for modelling software architectures.

PIECE-MEAL GROWTH The approach which underpins both ADAPTOR and the Janus project is one of
‘piece-meal growth’ [Coplien 1999]. The approach militates against the dominant
idea in software engineering that you can design in the abstract. Rather we take up
the notion of design as a “conversation with materials” (see [Schon]). In this view
design proceeds as a series of small-stepped transformations on the software product
itself. No blueprint or masterplan ever exists prior to code, though an exoskeleton, or
global vision is required which, to use a phrase of Alexander’s is “globally complete,
but flimsy...” in structure. Of course, there is rarely an alternative to such a course
when the ‘product’ is a legacy system, but our experience leads us to believe
increasingly that this is true also of any non-trivial software development.

This way of working naturally leads to the template form used below. Often the
particular form an ADAPTOR pattern has taken in a client’s catalogue has been
dictated by their internal needs. For example, one client required extensive
documentation of the known uses of various patterns, each one hyperlinked to the
pattern description in an intranet-based catalogue. But when presented in the public
domain we found, at an early stage, that the Coplien form [Coplien 1995] with
minimal variations gave the ‘leanest, meanest and cleanest’ describable form. But
the form, because of the ‘Context-Solution-Resulting Context’ sections at its heart,
has also proved to be the best at describing the conversation that ensues between the
designer and her materials that is at the heart of a genuine pattern language. That is
to say, the context (i.e. the current state of the system under development) is changed
by the application of a pattern, which in turn creates a new context (which in its
specifics cannot be predicted before it is actually created) and the opportunity for the
application of a new pattern. The ongoing conversation between the designer and her
system is therefore a generative one which always leads to a unique result, hopefully
custom fit for an equally unique and specific context.

CHRISTOPHER
ALEXANDER

In pursuit of a pattern language that gives form to the kind of piecemeal-growth,
architectural praxis in software development we have found a natural, practical
convergence with some of the key ideas of Christopher Alexander. In particular, we
have noticed that such a pusuit inevitably leads to a set of patterns which, in the
main, describe standard, self-contained operations or mini construction-processes,
rather than standard components or ‘parameterised collaborations’ as supporters of
the Unified Process tend to describe patterns [Jacobson 1999]. We have always
believed that the essential difficulties in software development were in putting
together a composition fit for a specific purpose. Components aid with productivity
Patterns for Architectural Praxis 3

Introduction
by providing cheaper materials, “chunkier” building blocks etc., but in so far as the
essential difficulties of design remain unresolved they can at best succeed in helping
us build our current systems quicker, not better. Quality systems do not, of course,
preclude the use of pre-built components (though systems assembled completely
from components are likely to be as appealling as were prefrabricated houses) but in
the absence of a praxis of software architecture which is both usage-driven and
design-led components in and of themselves do not offer even the hope of a cock’s
step forward.

In this practical conclusion we agree with Alexander completely, which is slightly
surprising, because we begin from philosophically different standpoints. The author
of this paper, who is also the lead author of ADAPTOR, takes the standpoint of
materialist dialectics. In this viewpoint, the only universal constant is change itself,
but the dynamics of specific changes are subject to laws which are themselves
historically specific and require constant reanalyzing as context changes. Alexander,
on the other hand, while also recognising both the importance of change and the
need to be specific, identifies and is driven by what he believes to be genuinely
timeless qualities, for example of ‘beauty’, ‘wholeness’ etc., (i.e., they are not
historically specific). Despite radically different, and at least partially opposed,
theories there is a convergence on a practice which places human beings as social
animals, and as as conscious and conscientious transformers (through their
inventiveness and design) of their environment, at the centre of the design process.
Though presented as individual patterns, and useful in themselves, the three patterns
below need the context of the other ADAPTOR/Janus patterns and, more than that,
experience of their use in real systems building to be fully understood. To aid the
reader an appendix has been supplied which presents in thumbnail some of the other
key patterns. The language is far from complete and even its current ‘components’
are continually under review. From July 2000 they will be published on web pages at
the website above, for comment, revision and improvement by the software
development community with an eye towards the later publication, in book form, of
a mature version of the system of patterns.

ACKNOWLEDGEMENTS The author would like to record his grateful thanks for the insights and suggestions
for improvement of these patterns provided by Frank Buschmann, who acted as
shepherd for EuroPlop 2000. Also acknowledged are the practical contributions of
Ping Dai, Ray Farmer and Linda Harries on the ADAPTOR patterns and template
and, above all, for the very many, often anonymous, software developers whose
creative and inventive work on the legacy systems of our clients has been the source
of most of what wisdom, if any, these patterns contain.
4 Patterns for Architectural Praxis

Mile-Wide, Inch Deep
Mile-Wide, Inch Deep

CLASSIFICATION philosophy of construction

PROBLEM How do you develop an architectural vision of a system without overconstraining
later design decisions?

CONTEXT A system is to be constructed which meets a business need, reflected in a set of
functional and non-functional requirements that may change.

FORCES • Successful design requires the harmonious interaction between ‘high-level’ and
‘low-level’ design, BUT maintaining conceptual integrity is the hardest thing in
software [Brooks 1975].

• Every design decision causes a transformation, BUT design decisions almost
always have effects in addition to those that were intended, and often these side
effects are unanticipated.

• A given architecture can be realized in a number of different, yet conforming
designs, BUT specific designs, rather than conceptual architectures tend to be on
a project’s critical path.

• “Form is liberating”, BUT software design, even at fine levels of detail, is a crea-
tive process that can be damaged if over-constrained, AND sometimes detailed
design decisions are proposed that require a flexing of the architecture.

SOLUTION Develop the software as a growing, living structure with the first iteration
forming an exoskeleton or outer shell. Mile-Wide, Inch- Deep gives maximum
scope for creative design through successive iterations by delivering an architecture
complete in its vision but leaving maximum room for later design decisions. Relieve
the architect(s) of the need to predict in advance the impact of the more detailed
design decisions. Build in “slippage” in each iteration so that mistakes,
imperfections and simply incomplete work can be dealt with in the next iteration.
While the architecture should always dominate over individual design decisions,
there will be times when so-called “lower-level” design decisions will require the
architecture to be flexed in order to incorporate them. Only an architecture which is
allowed to grow piece-meal can accomodate such changes gracefully.

RESULTING CONTEXT A software architecture results that creates a framework for ongoing negotiation
between the architecture and detailed design decisions in an iterative, incremental
development process. The Architect Controls Product pattern [Coplien 1995] can
now be applied.

RATIONALE Christopher Alexander’s Gradual Stiffening pattern [Alexander 1977] prescribes
structures that are “globally complete, but flimsy” as the basis for piece-meal growth
in building. In his description of the pattern he contrasts the smooth, apparently
effortless work of a master craftsman with the “panic-stricken attention to detail” of
the novice. Coplien [Coplien 1999] also contrasts piece-meal growth versus
‘masterplan’ approaches to software architecture. Charles C. Brett [Brett 2000] has
described a number of successful software systems that have grown ‘piece-meal’,
notably the St. Alphonsus Regional Medical Center project, and the Telekurs Paynet
system.
Patterns for Architectural Praxis 5

Keeper of the Flame
Keeper of the Flame

CLASSIFICATION Role

PROBLEM How do you maintain the conceptual integrity of a system, especially a long-lived
one, in the face of potentially many change requirements over time?

CONTEXT A software system is being, or has been constructed, according to the architectural
vision of a single person or group of like-minded individuals. Architect Controls
Product [Coplien 1995] has been applied. The system is optimized for piece-meal
growth through the application of Mile-Wide, Inch-Deep. The pattern also has
applicability for migrating legacy systems, provided that in the reverse-engineering
phase the above two patterns have been utilised.

FORCES • Conceptual Integrity is usually the product of a single vision, or the shared vision
of a small group of like-minded individuals, BUT software development is a
social process involving the creative talents of many individuals.

• The maintenance of conceptual integrity requires that all design choices, down to
the smallest details, conform to and reflect the original concept, BUT software
design is a creative process which can be damaged if over-constrained.

• Architecture needs to be relatively slow-moving as detailed design decisions
depend upon it and “globally complete” at the ouset of a project, BUT software
architecture and its detailed design are ‘thought-stuff’ and therefore highly mal-
leable and subject to change.

• Architects as well as architectures change over time.

SOLUTION Create a role whose function is to ensure that all subsequently proposed changes are
in accordance with, or at least continuous with, the original vision of the architect(s).
Architectural design and detailed design proceed through a series of interactions that
can be likened to a conversation. Normally the conversation is a one-sided affair
dominated by th architecture, but there are moments in the lifetime of a development
project when one or more of the detailed design decisions will, for one reason or
another (e.g., performance optimization) temporarily dominate. The Keeper role
ensures that the architectture does not have to be frozen to ensure that the
architectural interests are still represented within the dialogue. The harmony of both
‘high-level’ and ‘low-level’ design can therefore be maintained through an ongoing,
creative, social process rather than by adherence to some abstract methodology.

This role can be played by an individual or, in a large-scale development, by a small
team. The personnel playing the role will probably change over time, especially in a
long-lived system, and so care must be taken to ensure continuity through mentoring
before hand-over etc. Any person playing this role, or participating in it, should have
other ‘hands on’ roles in the software development itself. The Keeper is a human
point of reference for all developers who have ideas that potentially might cause
changes to the software architecture. Through discussion with the Keeper they can
resolve whether such changes are continuous with the architecture, and would thus
enhance it, or whether it might ‘break’ the architecture and violate its integrity. It is
the job of the Keeper to help a development team determine its design choices in a
way that takes full account of the existing Software Architecture. However, the
Keeper has no right of veto. She is not a policeman but a facilitator.
6 Patterns for Architectural Praxis

Keeper of the Flame
RESULTING CONTEXT The development team is fully conscious of the architecural vision when making
design decisions. The Keeper of the Flame ensures a constant and continuous
interaction between architecture and detailed design in which the architectural vision
is, in the last analysis, predominant. As a result, the chances of systems being built
which are flexible to change requirements but at the same time maintain a design
harmony is increased. More usable, easily maintainable systems should result.

RATIONALE Software Architecture is configurational knowledge. It includes answers to “Why?”
a particular set of design choices is made as well as “What?” design choices. As suh
it is most often not on the critical path of project development at all, almost never so
after the initial phases of development. As a result, some subsequent design
decisions are likely to have a potential to violate the original architecture. Creating a
role whose job it is to maintain consciousness of the conceptual integrity of the
system under development is the best, and most human, way of making sure the
vision is not lost in the process.
Patterns for Architectural Praxis 7

Archetype
Archetype

PROBLEM Where do you start to find the building blocks of a first-cut software
architecture?

CONTEXT A software system is to be built that meets a business need. The architecture is to be
developed Mile-Wide, Inch-Deep.

FORCES • The architect is the client’s agent, AND the client owns and maintains a concep-
tual model of the problem shaped by ‘real world’ forces.

• The development team owns and maintains a conceptual model of a potential
solution shaped by the design trade-offs in the world of the machine.

• Many possible alternative specifications may suffice to meet the business need,
AND many possible designs can implement a given specification.

• Traceability between an implemented solution and a business need is a require-
ment of a “good” solution, BUT the mapping between the conceptual model of
the problem space and the that of the solution is rarely straightforward.

• Specifications and implementations alike can change over the lifetime of a devel-
opment project.

• Specifications and implementations alike can change over the lifetime of a sys-
tem, even after implementation.

SOLUTION Build a model of the problem space based on the vocabulary of the clent(s) by
capturing the key abstractions as object types. An archetype is an object type
which represents a core concept in the problem domain. Object types are
implementation-free classifiers of objects (as opposed to object classes which are
cookie cutters for run-time object instances). In a problem space model it is
important that begaviour be represented abstractly. As a rule operation protocols are
a poor way of modelling such behaviour (because point-to-point messaging invoking
algorithmic methods is implied). Rather, describe archetypes in terms of their
responsibilities, or at least those logical attributes which reflect state-changing
behaviour through their variable values. The use of archetypes ensures that the
problem-space model is used to structure the overall solution. While the pattern does
not mandate that each archetype be directly represented (as object classes, for
example) in later specification or solution space models, this is most often how it
turns out. The archetype then provides reference points against which potentially
many different implementations can be validated, thus promoting traceability
between the models. Get the Model from the People can be used to identify
archetypes in the first place.

RESULTING CONTEXT A set of abstractions which captures the behaviour of concepts perceived in the real
world, and provides a reference point for representation of that behaviour in the
solution space.(Incidentally, that representation need not be an object-oriented
implementation).

RATIONALE Fred Brooks Jr., consciously using the metaphor of architecture in the built
environment, first wrote of the software architect as the user’s agent as far back as
1975 [Brooks 1975]. More recently Ian Graham has described objects as a general
mechanism for knowledge capture and representation in requirements engineering
8 Patterns for Architectural Praxis

Archetype
[Graham 1999]. Jan Bosch uses a similar concept in his software architecture design
method for product line architectures [Bosch 2000].
Patterns for Architectural Praxis 9

ADAPTOR/Janus Pattern Thumbnails
ADAPTOR/Janus Pattern Thumbnails

NAME Client’s Agent

PROBLEM Given the very many conflicting forces bearing down on any design project,
what is the chief responsibility of the Software Architect?

SOLUTION The first responsibility of the Software Architect is to develop a specification of
a solution that genuinely meets the client’s needs, and then to champion the
client’s interest above all others in the subsequent development.

NAME Get the Model from the People

PROBLEM How do you identify the key abstractions and the relations between them in a
legacy system?

SOLUTION Retrieve the model from the key developers and/or maintainers of the system.

NAME Pay Attention to the Folklore

PROBLEM How do you extract expert knowledge from system support staff when many,
probably a majority, of the current staff were not involved in the original design
and implementation?

SOLUTION Treat the organisation as a source of domain expertise even if it doesn’t do so
itself.

NAME Find the Architecture in the Development Structure

PROBLEM How do you recover the architecture of a legacy system that is not explicit, or
has been lost in the details of a long maintenance lifetime?

SOLUTION Examine the existing structure of the software development team that supports
the software.

NAME Mercenary Archaeologist

PROBLEM How do you make use of existing explicit or implicit information about the
current design of a legacy system without allowing the existing implementation
to dictate the new architecture?

SOLUTION Hire a specialist do deploy traditional reverse-engineering techniques off the
critical path of the project.
10 Patterns for Architectural Praxis

ADAPTOR/Janus Pattern Thumbnails
NAME Shamrock

PROBLEM How do you systematically separate abstractions found in the problem space
from the computational resources that support them?

SOLUTION Impose a three-part categorisation from the outset. Divide the packages into
“concepts” (problem domain), interaction domain (GUIs, inter-system
protocols etc.) and infrasture domain (persistence, concurrency etc.).

NAME Forces Majeurs

PROBLEM What forces, among the many bearing down on the design, should shape the
initial system?

SOLUTION Besides the functional requirements of the system, the chief non-functional
requirements must be established, perhaps by elicitation. Divide these into
operational requirements (performance, lcapacity, usability etc.) and
developmental requirements (reuse, ease of maintenance, flexibility to change
etc.) and, with the users, assign each one a weighting.

NAME Buffer the System with Scenarios

PROBLEM If business requirements shape software architecture, but the business context
is volatile, how do you start constructing a software architecture?

SOLUTION Use scenarios to buffer the system against the effect of such changes. Build key
contingency changes into the requirements.

NAME Cluster by Function

PROBLEM How do you initially decompose a system into packages?

SOLUTION Structure the system into functionally independent ‘business units’.

NAME Time-Ordered Coupling

PROBLEM How is the high-level structure of a system best organised for adaption in the
long-term?

SOLUTION Organise the system into partitions, or modify its existing structure if other
concerns predominate in the architecture, so that the components of each of the
partitions have similar lifespans and/or change-rates.
Patterns for Architectural Praxis 11

ADAPTOR/Janus Pattern Thumbnails
NAME Abstract Foundation

PROBLEM How do you represent, and position in the architecture, the least changeable
abstractions in a potentially long-lived system?

SOLUTION Push them ‘down’ the layered hierarchy and represent them, as far as possible,
as abstract classes or interfaces.

NAME Volatile Top

PROBLEM How do you represent, and position in the architecture, the most changeable
abstractions in a potentially long-lived system?

SOLUTION Push them ‘up’ into the topmost layers of the hierarchy and represent them as
concrete classes.

NAME System Composite

PROBLEM How do you approach the break up of a potentially monolithic legacy system
into subsystems and components.

SOLUTION Treat each potential subsystem or component as a system in its own right and
use top level requirements gathering aional component.nd analysis techniques
against each notional component.

NAME Cycle-Free Pathways

PROBLEM How do you manage the dependencies between packages and components?

SOLUTION Seek an overall scheme which is “levelizable”. That is, has the structure of a
Directed Acyclic Graph without binary or cyclical associations between
components.

NAME Architect-Builder

PROBLEM How do you minimise the communication gap between the architect(s) and the
builders of the various packages of the system?

SOLUTION Create the role of Architect-Builder so that the lead developer of each cluster of
packages makes use of the pattern Architect Also Implements [Coplien 1995].
12 Patterns for Architectural Praxis

ADAPTOR/Janus Pattern Thumbnails
NAME Builder’s Yard

PROBLEM How do you cope with third-party, or even in-house developed components
given the problem of ‘architectural mismatch’?

SOLUTION Develop an experimental space, physical or virtual, which is close to the
product development area and use it to experiment freely with components
near to where they might be deployed.

NAME Cheap Raw Material

PROBLEM How should components be utilised in a software development project aiming
for high quality in terms of its usability?

SOLUTION Treat components not as pre-built design fragments but rather as cheap raw
materials (building blocks) to be utilised only when productivity can be gained
without trading off design quality.

NAME Architects’ Studio

PROBLEM How do you provide an environment in which architectural knowledge can be
both utilised and disseminated?

SOLUTION Develop a space, preferably physical but possibly virtual, designed to facilitate
the exchange of creative ideas between architect-builders, and between
architect-builders and their clients.

NAME Published Interface

PROBLEM How do you permit parallel development at the earliest opportunity without
‘freezing’ the interfaces of components prematurely?

SOLUTION Distinguish between a ‘published’ interface (the current version to which others
in the team should develop to) of a component or package under development,
and the public interface of a stabilised, implemented component.

NAME Trackable Component

PROBLEM How do you allow for the iterative development of interfaces in a project?

SOLUTION Make the unit of release the unit of reuse.
Patterns for Architectural Praxis 13

Using the Pattern Language
NAME Physical Boundary

PROBLEM How do you protect code abstractions identified in a legacy system from one
another, and from interference from newly developed code abstractions?

SOLUTION Where possible develop the abstract interface as a physically separate unit of
code to represent the legacy system’s abstract behaviour.

Using the Pattern Language

The language is a network of patterns. But when used, it is used in a sequence with
one pattern being used to set the context for the use of the next. The network, not yet
complete by any means, will provide many possible pathways through it in practical
use but the one shown below demonstrates the broad sweep of the language, at the
same time providing an index to the current set of patterns it contains. Readers will
familiar with Christopher Alexander’s A Pattern Language [Alexander 1977] will
recognise this device as an alternative to a pattern’s map in the form of a graph.

Start with the patterns which identify the architectural requirements, and provide for
an outline architecture. We start with the architect herself as Client’s Agent. This
viewpoint needs to be maintained throughout the development process to ensure that
the structure of the solution maintains alignment with structure of the problem it is
trying to solve. Ensure piece-meal development of the architecture by deploying an
approach based on the philosophy Mile-Wide, Inch-Deep. Make full use of the
various kinds of human expertise available, especially (if a legacy system)
maintainers and developers, using Get the Model from the People. Uncover ‘hidden’
or tacit knowledge through Pay Attention to the Folklore. If you are modifying an
existing, long-lived structure Find the Architecture in the Development Structure. If,
in a legacy system, additional input from the current design is needed then employ a
Mercenary Archaeologist to deal with the reverse engineering required.. Capture
core abstractions through the use of Archetype. Separate the archetypes from
implementation concerns by applying Shamrock to separate the concept domain
from those of infrastructure and interaction. Identify the main non-functional
requirements with Forces Majeurs.

Validate the exoskeletonal system against functional and non-functional
requirements, manipulating it against different and competing high-level scenarios
using Buffer the System with Scenarios. Now the separation of concerns within the
conceptual domain can be worked out. Cluster by Function initially, and then apply
Time-Ordered Coupling to redistribute packages and their internal couplings
according to their different change rates. The overall structure should include
Abstract Foundation at its “bottom” layer: that is, the most stable packages
exhibiting the slowest change-rates should be predominantly composed of abstract
archetypes. Similarly, the “uppermost” (that closest to the users) layer should reflect
Volatile Top. For legacy system migration use System Composite and treat sub-
systems of the new architecture as systems in their own right, using ‘top-level’
requirements engineering techniques at recursively lower levels to redistribute and
then validate functionality.
14 Patterns for Architectural Praxis

Using the Pattern Language
An important phase of the development activity concerns the management of
dependencies between the packages. Cycle-Free Pathways need to be established so
that the structure is, as far as possible, a Directed Acyclic Graph. Each package
should be structured to present a Narrow Interface to other packages. In legacy
systems the utilisation of Facade [Gamma 1995] is often appropriate.

Utilising Code Ownership [Coplien 95] packages can now be assigned within the
development team. In large-scale developments a maximum of 5-6 packages should
be the responsibility of each Architect-Builder. Each architect-builder is responsible
for a virtual, or perhaps physical, Builder’s Yard in which third-party and/or in-house
components can be customised for use as Cheap Raw Material in that part of the
development for which they are responsible. The Keeper of the Flame role needs
also to be created in order to maintain the conceptual integrity of the system as
structure is added. To this role should be assigned a virtual, or physical, Architect’s
Studio which serves both as a meeting place for the architect-builders to evolve
architectural policy, and for meetings between the architects and clients.

Now the package structure can be revisited. In an order determined by the logical
dependency graph it is necessary to have a Published Interface for each package.
Each package thus becomes a Trackable Component with its ‘owners’ responsible
for releasing interface information to the rest of the development team, especially to
the owners of the packages directly dependent on it. Within each package, the
owners seek to represent the public interface of the package as a Physical Boundary.

FUTURE WORK Each of the areas mentioned above need to be deepened in order to create a greater
density of patterns within them, moving ‘down’ until fine structure and detailed
design is also addressed by the pattern language. Some areas are as yet unaddressed:
by the published candidate patterns for example, the allocation of physical
components to processors, and the interfacing of conceptual domains to domains
reflecting computational resources (e.g., persistence, concurrency, user interfaces
etc.), and the detailed organisation of development staff. These are the targets for the
next phases of the Janus project.

REFERENCES [Alexander 1977] Alexander C., and S. Ishakawa, M. Silverstein, M. Jacobson, I.
Fiksdahl-King and S. Angel. 1977. A Pattern Language. Oxford University Press.
New York, NY.

[Bosch 2000] Bosch J. 2000. Design and Use of Software Architectures. ACM Press
Books-Addison Wesley. London

[Brett 2000] Brett C.C. 2000.“ “ in Proceedings of Software Architecture 2000.
London. March.

[Brooks 1975] Brooks F.1975. The Mythical Man Month. Addison-Wesley. Reading,
Mass.

[Coplien 1975] Coplien J. O. 1995 “A Generative Development-Process Pattern
Language” in J.O. Coplien and D.C. Schmidt (eds.) Pattern Languages of Program
Design. Addison Wesley. Reading, Mass.

[Coplien 1999] Coplien. J.O. 1999. “Reevaluating the Architectural Metaphor:
Towards Piecemeal Growth “. Guest Editorial in IEEE Software special issue on
Software Architecture. October/September.
Patterns for Architectural Praxis 15

Using the Pattern Language
[Jacobson 1999] Jacobson I., J. Rumbaugh and G. Booch.1999. The Unified Process.
Addison Wesley. Reading, Mass.

[O’Callaghan 1996] O’Callaghan A.J. 1996. “ Object Oriented Reverse
Engineering“ in Application Development Advisor. 1 (1) October.

[O’Callaghan 2000] O’Callaghan A.J. and K. Henney. 2000. “Architects do it with
Style” in Proceedings of Software Architecture 2000. March.

[Schon 1983] Schon D. 1983. The Reflective Practitioner: How Professionals Think
in Action.Basic Books. New York, NY.
16 Patterns for Architectural Praxis

	Introduction
	The Janus project
	Piece-Meal Growth
	Christopher Alexander
	Acknowledgements

	Mile-Wide, Inch Deep
	Classification
	Problem
	Context
	Forces
	Solution
	Resulting Context
	RATIONALE

	Keeper of the Flame
	Classification
	Problem
	Context
	Forces
	Solution
	Resulting Context
	Rationale

	Archetype
	Problem
	Context
	Forces
	Solution
	Resulting Context
	Rationale

	ADAPTOR/Janus Pattern Thumbnails
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution
	Name
	Problem
	Solution

	Using the Pattern Language
	Future Work
	References

