Small User Interfaces UNTITLED by Weir, Noble

Small User Interfaces
James Noble and Charles Wer, 19972000

These patterns are part of an ongang project to capture and daument techniques for the design and
construction d systems that must function under tight memory constraints. Some patterns from this
project will be puldished in book form in the Addison-Wesley Software Patterns Seriesin 2000

This paper cortains the foll owing patterns:

* Makethe User Worry
¢ Fixed User Memory
¢ Variable User Memory

Thefull chapter will i nclude several addtional patterns (and a proper bibliography!); the first
pattern includes an overview of all the patterns that will beincluded in final chapter, including these
additional patterns.

Related patterns have appeared in several conferences, including:

1. Highlevd and ProcessPatterns from the Memory Protection Society. James Noble and Charles
Weir. In Pattern Languages of Program Design4. Neil Harrison, Brian Foote and Hans
Rohrert, editors. AddisonWesley, 1999

2. Patternsfor Small Machines. James Noble and Charles Weir. Proceadings of the European
Conference on Pattern Languages of Program Design, Irsee Germany. Universitéts Verlag
Konstanz. 1998

3. Secondary Storage. Proceadings of the European Conference on Pattern Languages of Program
Design, Irsee Germany. Universitéts Verlag Konstanz. 1999

Further information about this project can be found onthe web at:
http://www.cix.co.uk/~cweir/Book/DraftChapters.htm

© 1999 Charles Weir, James Noble Page 1

Major Technique: Make the User Worry UNTITLED by Weir, Noble

Major Technique: Make the User Worry
James Noble, Charles Weir
© Charles Weir, James Noble, June 2000
Version 4/06/00-3.

How can you manage memory in an unpedictable interactive system?
* Memory requirements can depend onthe way users interact with the system.
» If you allocate memory conservatively, the systems functionality may be constrained.
» If you allocate memory aggressvely, the system may run aut of memory.

» The system neals to be able to support different users whowill use the systemin quite
diff erent ways.

* Users ned to perform a number of different tasks, and each task has diff erent memory
requirements.

* Thesystem may haveto run efficiently on rardware with greatly varying physical memory
resour ces.

* It'smoreimportant that the system has aufficient capacity than that the systemis easy to
use.

In many cases, especialy in interactive systems, memory requirements cannd really be predicted in
advance. For example, the memory requirements for the Strap-1t-On PC’s word-processng
application Word-O-Matic will vary greatly, depending the features users chocse to exercise [J one
user may want voice output, while anather may chocse a large fort for file aditing, and a third may
require a large amount of clip art.

The memory demands of interactive systems are unpredictable because they depend critically on
what users chocse to dowith the system. If you try to produce a generic memory budget, you will
over-all ocate the memory requirements for some parts of the program, and consequently have to
under-all ocate memory for others.

For many interactive systems, providing the necessary functionality is more important than making
the functionality easy to learn o to use. Being ableto use a systemto doa variety of jobs without
running aut of memory is sufficiently important that you can risk making dher aspects of the
interface design more complicated if it makes this possble. Thisis especially important because a
system’s users presumably know how they will use the system when they are actually usingit, even
through the system'’ s designer may na no knaw this ahead o time.

Therefore Makethe system’s memory model explicit in its user interface so that the user canworry
abou memory.

Design a conceptual mode of the way the system will use memory. Ideally, this mode should be
based onthe conceptual mode of the system and the domain moddl, but providing extra information
about the system’s memory use. This modd should be expressed in terms of the objects users
manipulate, and the operations they can perform on those objects, rather than the objects used
directly in the implementation d the system.

© 1999 Charles Weir, James Noble Page 2

Major Technique: Make the User Worry UNTITLED by Weir, Noble

Expose this memory modd in yaur program’s user interface, and let users manage memory
alocation drectly — either in the way that they create and store user interface level objects, or
more coarsdy, balancing memory use between their objects and the program’ s internal memory
requirements.

For example, Word-O-Matic makes the user take responsibility for the system’s use of memory. On
request, Word-O-Matic displays the amount of memory it has avail able, and all ows users to choose
how that memory should be all ocated. If a user wantsto store a larger amount of clip-art they well
need to all ocate sufficient memory to store the clip-art that they need. Word-O-Matic uses all the
otherwise unall ocated space to store the document, so a user subsequently needs to work onalong
document, the user will need to reduce the amount of memory all ocated to clip-art.

Consequences
The system can ddliver more behaviour to the user than if it had to make pessmistic assumptions
about its use of memory. Theuser can adjust their use of the system to make the most of the
avail able memory, reducing the memory requirements for performing any particular task.
Although the way user memory will be all ocated at runtime is unpredictable, it can be quarantined
within the MEmoRrY BubceT, so the memory use of the system as a whdeis more predictable.
Some user interfaces can even make the user worry about memory fragmentation.

However: Users now have to worry about memory whether they want to ar nat, so the systemis
lessusable. Worrying about memory complicates the design d the system and its interface, making
it more corfusing to users, and dstracting them from their primary task. Given a chaice, users will
choose systems where they do nd have to worry about memory. You have to spend programier
effort designing a user interface that makes the memory modd visible to the user.

0, 0, 0,
A X4 A X4 A X4

Implementation
There are number of techniques which can expose a system’ s memory modd to its users:

e Constantly display the amount of freememory in the system.

e Providetodsthat allow usersto query the contents of their memory, and the amount of
memory remaining.

* Generate warning messages or dialogue boxes as the system runs out of memory, or as the
user all ocates lots of data.

» Let the user choose what data to overwrite or delete when they need more memory.
» Show the memory usage of diff erent components in the system.
» Tdl users how their actions and choices aff ect the system’s memory requirements.

Here are some further isaues you should consider when making users worry about memory
all ocation:

1. Supporting Different Kinds of Users. Different users can dffer widdly in the roles they play
with respect to a given system, and dten their memory use (andinterest in ar capabili ty to manage
the system’s memory use) depends uponthe role they play. For example, the users of a web-based

© 1999 Charles Weir, James Noble Page 3

Major Technique: Make the User Worry UNTITLED by Weir, Noble

information kosk system would play two main roles with respect to the system [a casual inquirer
tryingto dbtain information from the kiosk, and the kiosk administrator configuring the kiosk,
choasing retworking protocol addresses, fort sizes, image resolutions and so on The casual
ingquirer would have nointerest in the system’s modd of memory use, and nobackground a
training to understand a manipulate it, while the kiosk administrator could be vitally concerned
with memory isues.

Thetechniques and processes of User Role Moddli ng from Usage-Centered Design (Constantine &
Lockwood 1999 can be used to identify the diff erent kinds of users a system needs to support, and
to characterise the support a system neeals to provide to each kind d user.

2. General Purpose Systems. The more general a system’s purpose, the more difficult memory

all ocation becomes. A system nmay have to support several radically diff erent types of users — say
from novices to experts, or from those working onsmall j obs to those working onbig jobs. Even
the work of a singe user can have diff erent memory requirements dependng upon the detail s of the
task performed: formatting and rasterising text for laser printing may have completely diff erent
memory requirements to entering the text in the first place. Also, systems may need to run on
hardware with varying memory requirements. Often the memory suppied between dfferent modds
or corfigurations of the same hardware can vary by a several orders of magnitude and the same
program may need to run onsystems with 128<b of memory to systems with 128V or more. The
more general a system’s purposes, the more leverage there can be in making (or allowing) usersto
take responsibili ty for memory use.

Examples

For example, after it has displayed its gartup screen, the Strap-1t-On wrist mounted PC asks its
user to select an applicationto run. The seect an appli cation screen also dsplays the amount of
memory each applicationwill need if it is chosen. In thisway, the Strap-In-On constantly provides
cues that users may need to worry about memory consumption.

© 1999 Charles Weir, James Noble Page 4

Major Technique: Make the User Worry UNTITLED by Weir, Noble

Specialised Patterns

Therest of this chapter contains five patterns that present a range of techniques for making the user
worry about the systems memory use. It describes ways that a user interface can be structured,
how users can be placed drectly in control of a system’s memory all ocation, and describes how the
quality of a user interface can betraded off against its memory use.

Fixep Sizep UssR MEMORY describes how user interfaces can be designed with a small number of
user memories. Cortrols to accessthese memories can be designed drectly into the interface of the
program, making them quick and easy to access Fixed sized user memories have the disadvantages
that they do nd deal wdl with user data objects of varying sizes, or more than about twenty
memory locations.

VARIABLE SIZED UseER MEMORY all ows the user to store variable numbers of varying sized data
objects, overcoming the major disadvantages of designs based onfixed sized user memory. The
resulting interface designs are more complex than those based onfixed sized memory spaces,
because users nead ways of navigating through the contents of the memories and must be careful
nat to exhaust the capacity.

© 1999 Charles Weir, James Noble Page 5

Major Technique: Make the User Worry UNTITLED by Weir, Noble

MEMORY FEEDBACK, in turn, addresses ome of the problems of variable sized user memory:
bypresenting users with feadback describing the state of a system’s memory use, they can make
better use of the avail able memory. Providing memory feedback has a wider applicabili ty than just
managing user memory, as the feadback can also describe the system'’s use of memory — the
amount of memory occupied by appli cation software and system services.

User MEMORY CONFIGURATION extends Memory Feadback by all owing users to configure the way
systems use memory. Often, information a advice about how a system will be used, or what
aspects of a system’s performance are most important to its users, can hep a system nmeke the best
use of the avail able memory.

Finally, Low QuALITY MuLTIMEDIA describes how multimedia resources — a particularly memory-
hungry component of many systems — can be reduced in quality or even diminated altogether, thus
releasing the memory they would atherwise have occupied for more important uses in the system.

See Also

The memory modd exposed to the user may be implemented by FIXEp ALL OCATION or VARIABLE
ALLOCATION — FIXED SizE UsER MEMORY is usually implemented by Fixep ALL ocaTion and
VARIABLE SizE UsER MEMORY is usually implemented by VARIABLE ALL OCATION.

FUNCTIONALITY A LA CARTE [Adams 95] can present the costs and benefits of memory all ocations to
the user.

A static MEMORY BUDGET can provide an alternative to User MEMORY CONFIGURATION that does
nat require users to manage memory explicitly, but that will have higher memory requirements to
provide a given amount of functionality.

The patternsin this chapter describe techniques for designing user interfaces for systems that have
limited memory capacity. We have nat attempted to addressthe must wider question d user
interface design generally — asthisis atopic that deserves a book d its own. Schneiderman's
User Interface Designis a general introductionto the fidd o interface design, and Constantine and
Lockwoods” Sdtware for Use presents a comprehensive methoddogy for incorporating user
interface designinto development processes. Both texts discussinterface design for embedded
systems and small portable devices as well as for desktop appli cations.

© 1999 Charles Weir, James Noble Page 6

Fixed Size User Memory UNTITLED by Weir, Noble

Fixed Size User Memory
Also knavn As: Fixed Number of User Memories

How can you present a small amount of memory to the user?
* You have a small amount of user-visible memory.
» Users ned to store a small number of discrete items in the memory
» Everyitem users neal to storeis roughly the same size
» Users ned to be able to retrieve data from the memory particularly easily.
» Users canna tolerate much extra complexity in theinterface.

Some systems have only a small amount of memory avail able for storing the users’ data (and
presumably only a small amount of data that users can store). This user data is often a series of
discrete items — such as telephore numbers or configuration settings where each item is the same
size. For example, the Strap-1t-On neads to definitions for its voice input feature. Each macro
requires enough memory to recogrise a threesecond spoken phrase of the user's choice, and the
commands that are to be executed when the voice macro facili ty recognises that phrase.

Users nedal to be able to retrieve data from memory quickly and easily — after all, that’s why the
system is gaing to the trouble to store such a small amount of data. For example, the point of the
Strap-it-On’'s voice input macros are to make data entry more dficient, streamlined, and “fun to do
al day” (to quote the marketing brochure). Similarly music synthesisers gore multiple ‘ patches’ so
that they can be quickly recalled during a performance, and phores dore numbers because people
want to dal them quickly.

One approach to this problemisto let the user chocse things to store, until the deviceis out of
memory, when it stops acoepting things. Thisis quite easy to implement but is unsatisfactory when
there' s only a small amount of memory. Users will tendto get theidea that the device has infinitude
of memory, and consequently will be surprised when the system refuses their requests. Also, you'll
need somekind d interface to retrieve things from the memory, to ddete things that have already
been stored, and so on— all of which will j ust take up more precious memory space.

Therefore: Provide a small, fixed number of fixed size memory spaces, andlet the user manage them
individudly..

The design should make clear that there are only a fixed number of user memory spaces —
typically by allocating a single interface éement (often a physical or virtual button) for each
memory. ldeally each memory space should be accessed drectly viaits button (or via asequence
number) to reinforce the idea that there are only a fixed number of user memories.

The user can store and retrieve items from a memory space by interacting with the interface
element(s) that represent that user memory. Ideally the simplest interaction, such as pressngthe
button that represents a user memory, retrieves the contents of the memory — restoring the device
to the configuration stored in the memory, running the macro, or dialli ng the number held in that
memory. Storinginto a user memory can be a more complex interaction, because storingis
performed much lessfrequently than retrieval. For example, pressnga “store’ button and then

© 1999 Charles Weir, James Noble Page 7

Fixed Size User Memory UNTITLED by Weir, Noble

pressgng the memory button might store the current configuration into that memory. Any aher
action that uses the memory should accessit in the same way.

Finally, an interface with a fixed number of user memories does nat need to support an explicit
delete action from the memories: the user simply chooses which memory to overwrite.

For example, the Strap-1t-On all ocates enough storage for nine voice macros. This gorageis
always avail able (it is all ocated permanently in the memory budget; the setup screen is quickly
accesshle viathe Strap-1t-On's operating system, and is designed to show only the nine memory
spaces avail able.

Consequences

Theideathat the system has a fixed number of fixed size user memory spaces into which users can
store data is obvious from the its design, making the design easy to learn. The fixed number of user
memory spaces becomes part of users' modd of the system, and the amount of memory available is
always clear to users. Users shauld never experience the system running aut of memory — rather,
they will j ust have to decide which user memory to overwrite. Certainly, if all memories (either full
or empty) are accessd in the same way, the system never needs to produce any error messages
explaining that the system has run aut of memory. Because the number of memories is fixed, the
interface can be designed so that users can easily and qucky chocse which memory to retrieve.
The graphical layout of the interface is made easier, because there are always the same number of
memories to dsplay.

However: The user interface architectureis drondy governed by the memory architecture. This
technique works well for a small number of memory spaces but does not scale well to all ocating
more than twenty or thirty memory spaces, or storing dojects of morethan two o threediff erent
sizes. User interfaces based ona fixed number of user memories are generally lessscalable than
interfaces based onsomekind d variable all ocation. Increasing the size of a variable memory may
simply require increasing the capacity of a browser or list view, but increasing the number of fixed
user memories can require aredesign d theinterface, especially if memories are accessed drectly.

0, 0, 0,
A X4 A X4 A X4

Implementation

1. Accesing Memories. There are threemain interface design techniques that can be used to
accessfixed size user memories — dired access barked access andsequential access This
ill ustrates the diff erence betwean a pattern model and an interface design — the same pattern for
fixed sized user memories can be realised in several diff erent ways in an actual user interface
design.

1.1. Direct Access For asmall number of user memories, allocate a singe interface dement to
each memory. With a singe button for each memory, pressng the button can recall the memory

directly — afast and easy operation. Unfortunately, this techniqueis limited to sixteen o so
memories because few interfaces can aff ord to dedicate too many € ements to memory access

For example, the drum machines in the ReBirth-338 software synthesiser provide a fixed size user
memory to store drum patterns. The sixteen buttons acrossthe bottom of the picture below
correspondto sixteen memory locations goring sixteen drum beats making up a single pattern [

gy B0 o so f i § o wr N HT RS CRJCcH _OHJCC AC)

TUHE LEVEL| TURE LEVEL| TURE LEVEL| TURE LEVEL| TURE LEVEL |LEVELLEVEL LEVEL |LEVELLEVEL
Seeeeesee e 966
AT OBEC |TORE SAAP I:IEI: OEC OEC OEC OEC |TUHE TUNRE

—eeeee ¢ @ €a Qe

._ [Easons) Fussa) e) Fewm] (e) [ws] o os] [Fe ws)

nA000088000800088a8a00

Page 8

Fixed Size User Memory UNTITLED by Weir, Noble

we can seethat the bassdrumwill play onthefirst, seventh, deventh and fifteanth beat of the
pattern.

1.2 Banked Access For between ten and ore hundred eements, you
can use atwo dmensional scheme. Two sets of buttons are used to - sl acosss
each memory location— thefirst set to sdect a memory bank, and B PATTERM the

second set to select an individual memory within the selected bank. n E E n
Banked accessrequires fewer interface dements than drect access given

the same number of memory spaces, but is dill quick to aperate. BOE0

Again following hardware design, the ReBirth synthesiser can Bl e store
thirty-two patterns for each instrument in emulates. The patterns E E ﬂ are
divided up into four banks (A, B, C, D) of eight patterns each, and these
patterns are seected using banked access SHUFFLE 5|'E|:5E

1.3 Sequential Access For even lesshardware cost (or screen .][+ real

estate) you can get by with a couple of buttons to scroll
sequentially through all the avail able memory spaces. This approach is common oncheap or small
devices becauseit has a very low hardware cost and can provide accessto an unlimited number of
memories. However, sequential scrollingis more difficult to use than drect access because more
user gestures are required to accessa given memory location, and because the memory modd is nat
as explicit in the interface.

A ReBirth songis made up of alist of patterns. The control below plays through a stored song To

store a pattern into a song you sdlect the positionin the songusing the small arrow cortrols to the

left of theBar” windaw, and then chocse a pattern using the pattern selector shown above.

2, Naming Memories. Where there are more than four or five memories you can consider allowing

Sync - MIN patern |, = Song mode

the user to name each memory to make it easier for users to remember what is dored in each
memory space. A memory name can be quite short — say eight uppercase characters — and so
can be stored in a small amount of memory using simple StTriNG ComPRESSON techniques.

Thereis gill atrade-off between the memory requirements for storing the name and the usabilit y of
alarger number of memories, but there is no point providing a system with large numbers of
memories if users can’t find the things they have stored in them. If the system includes a larger
amount of preset data in stored in READ-ONLY STORAGE you can suppy names for these memories,
while avoiding raming user memories gored in scarce RAM or writeable persistent storage.

3. A Single User Memory Space Systems that provide just one memory space are special cases of
fixed sized user memory. For example, many telephores have a "last number redial” feature that is
asingeuser memory set after every number is dialled. Similarly, many laptop computers have a
singe memory space for storing backup software corfiguration parameters, so that the machine can
be reboated if it is misconfigured. A singe memory spaceis usually quick and easy to access but
obviously canna store much information.

4. Variable Sized Objeds. A fixed number of fixed sized memory locations does nat cope well
when storing dojects of varying sizes. If anitem to be stored is too small for the memory space, the
extraspaceiswasted. If anitemistoolarge, either it must be truncated, or it must be storedin

© 1999 Charles Weir, James Noble Page 9

Fixed Size User Memory UNTITLED by Weir, Noble

two o more spaces (presumably wasting memory in the last overflow space), or the user must be
prevented from creating such an itemin the first place.

If an interface neals to store just two o threekinds of diff erent sized user data objects the interface
design can have a separate set of user memories for each kind d object that needs to be stored.

This doesn’t solve the problem completdly, since the size and rumber of the memory spaces must be
determined in advance, andit is unlikely that it will match the number of objects of the appropriate
kind that each user wishes to store.

5. Initialising Memories. Animportant distinctionin the design d fixed size user interfaces is
whether the system supports afixed sized nrumber of memory spaces or afixed sized rumber of
objeds. Thedifferenceisthat if the system has a number of memory spaces, some of the spaces
can be ampty, but it doesn't make sense to have an empty object stored in a memory space. In
general, designingin terms of objectsis preferable to designingin terms of memory spaces. For
example, thereis no real to support retrieve operations on empty spaces if there can be no empty
spaces. For thisto work, you need to find goodinitial contents for the objects to be stored. The
memory spaces of synthesisers and drum mechines, for example, are typically initiali sed with useful
sounds or drum patterns than can be used immediately, and later overwritten.

One compensating advantage of having the idea of empty memories in a conceptual modd is that
you can support an impli cit store operation that stores an dbject into some ampty memory space,
without the user having to chocse the space explicitly. This certainly makes the store operation
easier, but (unlike a store operation that explicitly selects a memory spaceto owerwrite), and
implicit store operation can fail dueto lack of memory — eff ectively treating the fixed size
memories as if they were variable sized. The Nokia 22102 mobil e phore supports implicit stores
into itsinternal phore book, but, if there are no empty memories, users can chocse which memory
to owerwrite.

Example

The StrapltOn PC has nine memories that can be used to store voice input macros. Each memory is
represented by ore of nine large touch-sensitive areas on the StrapltOn screen. To record a macro,
users touch the screen area representing the memory where they want to store the macro [0 if this
memory is already in use, the eisting macro is overwritten.

© 1999 Charles Weir, James Noble Page 10

Fixed Size User Memory UNTITLED by Weir, Noble

The Korg WaveStation synthesiser contains sveral examples of fixed sized user memories. The
most obviously is that its user interface includes five soft keys that can be programmed by the user
to moveto a particular page in the WaveStation menu hierarchy. The soft keys are accessed by
pressng a dedicated "jump" key onthe front pand, and then ore of the five physical keys under the
display.

The main memory architecture of the WaveStationis also based onfixed sized user memories. Each
WaveStation can storefifty 'performances, that can refer to four of thirty-five 'patches, each of
which can play ore of thirty-two 'wave sequences. Patches and performances have diff erent sizes
and are stored in their own fixed-sized user memories. If you run aut of patch storage, you cannd
utili se enpty performance memories. Patch and performance memories are addressed explicitly
using memory location rumbers entered by cursor keys, turning a data-entry kndb, or using a
numeric keypad. Patches, performances and wave sequences can be named — performances and
patches with up to fifteen characters, wave sequences only up to seven.

0, 0, 0,
A X4 A X4 A X4

Known Uses

GSM mobile phore SIM cards are smart cards that store a fixed nrumber of phore memories
containing rame and rumber (the number of memories depends onthe SIM variant). Users access
the memories by number. The same SIM cards can also store a fixed number of received SMS
(short message service) text messages — the user istold if a message could nd be stored because

© 1999 Charles Weir, James Noble Page 11

Fixed Size User Memory UNTITLED by Weir, Noble

the store overflowed. SIM cards can also store a fixed number of already read messagesin a
numbered store. This doreis visible to the user and accessed by message number.

An early Australian laser printer required the user to uncompresstypefaces into ore of a fixed
number of memory locations. For example, making Times Roman, Times Roman Italic, and Times
Roman Bold typefaces avail able for printing would require threememory locations into which the
ROM Times Roman bitmaps would be uncompressed, with some bitmap manipulations to get italic
and bold eff ects. Documents slected typefaces using escape codes referring to memory locations.
Larger fonts had to be stored into two o more cortiguous locations, making the user worry about
memory fragmentation as well as memory requirements, and gving \ery interesting results if an
escape code tried to print from the second Falf of a font stored in two locatiors.

The Ensonig Mirage sound sampler was the ultimate example of making the user worry. The poor
user — presumably a musician with little computer experience — must all ocate memory for sound
sample storage by enteringtwo dgit hexadecimal numbers using orly increment and decrement
buttons. Each 64K memory bank could hdd up to eight samples, provided each sample was gored
in a singe contiguous memory block. In spite of the arcane and frustrating user interface (or
perhaps because of the high functionality the interface supported with limited and cheap hardware)
the Mirage was used very widdy in the mid-1980s popular music, and maintains a loyal if ecoentric
following ten years later.

See Also

VARIABLE-SIZED UsER MEMORY Off ers an alternative to this pattern that explicitly modds a
reservoir of memory in the system, and all ows users to store varying rumbers of variable sized
objects.

MEMORY FEEDBACK can be used to show users which memories are enpty and which arefull, or
provide statistics on the overall use of memory (such as the percentage of memories used o free.

Although systems' requirements do nd generally specify Fixep Sizep UsER MEMORIES, by
negatiating with your clients you may be able to arrange a FEATURECTOMY.

A MEMORY BUbGeT can help you to design the number and sizes of Fixep Sizep UsER MEMORIES
your system will support.

You can use Fixep ALL ocaTIoN to implement fixed sized user memories.

© 1999 Charles Weir, James Noble Page 12

Variable-Sized User Memory UNTITLED by Weir, Noble

Variable-Sized User Memory
How can you present a medium amourt of memory to the user?

* You have a medium to large amount of user-visible memory

» Usersneal to store a varying rumber of items in the memory

* Theitems users can storevary in size

» The memory requirements for what the user will need to store are unpredictable.

Some programs have medium or large amounts of memory avail able for storing user data. For
example, the Strap-1t-On wrist-portable PC provides a fil e system to all ow usersto store
application data. Files can vary in size from a few words to several pages, and within the bounds of
the systems memory, some users gore a few large files while other users gore many small files. The
behaviour of some users changes over time — one week storing many small files, the next one large
file, the next a mixture.

One approach to arganising the memory would be to provide Fixep Sizep UserR MEMORY. The
system could all ocate a fixed number of fixed-sized spaces to hdd memos the user wishes to store.
Of coursg, this suffers from all the problems of fixed all ocation: memory spaces hading small
memos will waste the rest of the space, and long memos must somehow be split over a number of
different spaces. Ancther alternative would be to require users to pre-all ocate space to store
memos, but this requires users to be able to accurately estimate the size of a new memo beforeit is
created, and the pre-all ocation step will greatly compli cate the user interface.

Therefore Randamly all ocate user objeds from a reservoir of freememory.

Allow the user to store and retrieve items flexibly from the systems' memory reservoir. The
reservoir does nat have to be made eplicit in the interface design — although it may be. Each item
stored in the memory should be treated as an individual object in the user interface, so that users
can manipulate it directly. You also reed to provide an interface to all ow the user to find particular
items they want to use, and to explicitly delete objects from the reservoir making the memory space
avail able for the storage of new objects.

For example, the Strap-1t-On uses VaRIABLE Sizep UserR MEMORY for its fil e system. A reservoir
large enoughto hdd ten thousand words (about a hundred thousand characters of storage) is
allocated to hdd all the users files. When users create new fil es they are stored within the reservoir
until they are plicitly deeted. Thefiletod displays the memory used by every filein a browser
view, the percentage of freememory |eft in the reservoir pod inits gatus line, and also uses error
messages to warn the user when memory use exceedls certain threshdds (90%, 95% 99%).

Consequences

Users can store new objects in memory quite easily, provided there is enough space for them. Users
can make flexble use of the main memory space, storing varying rumbers and sizes of itemsto
make the most of the systems capacity — €ff ectively reducing the system’s memory requirements.
Users dorit need to chocse particular locations in which to store items or to worry about
acddentally overwriting items or to dopre-all ocation, and this increases the system'’ s usahility.

© 1999 Charles Weir, James Noble Page 13

Variable-Sized User Memory UNTITLED by Weir, Noble

Variable sized memory allocationis generally quite scalable, asit is easier to increase the size of a
reservoir (or add multiple separate reservoirs) than to increase the number of fixed size memories.

However: The program’s memory model is expased. The user needs to be aware of the reservoir,
even though the reservoir may na be eplicitly presented in the interface. The user interface will be
more complexas a result, and the graphical designwill be more difficult. Userswill nat always be
aware of how much memory is left in the system, so they are more likely to run ou of memory.

Any kind d variable all ocation decreases the predictabilit y of the program’s memory use, and
increases the posgbility of memory fragmentation. Variable sized all ocation also has a higher
testing cost than fixed sized all ocation.

Implementation

Although a variable sized user memory can gve users an illusion d infinite memory, memory
management isaues must still [urk under this facade: somewhere the system needs to record that the
objects are all occupying space from the same memory reservoir, andthat the reservoir is finite.
Even if thereservoir is nat explicit in the interface design, try to integrate memory use the rest of
the system and the domain mode, so that the user can understand hav the memory management
works. Consider using MemoRy FEepBack to kegp the user informed about the amount of memory
used (and more importantly, available) in the reservair ,typically by listing the amount of memory
occupied by objects when dsplaying the objects themselves.

A user interface based on \ariable sized user memory is more sophisticated than a similar modd
built onfixed sized user memory. A modd of variable sized user memory must include nat only
empty or full memory locations, but also a more abstract concept of "memory space’ that can be
all ocated between newly created dbjects and existing dojects if their size increases. The objects that
can be stored in user memory can also be more sophisticated, with varying sizes and types.

Here are some further isaues to consider when designing user interfaces that provide variable user
memory Spaces:

1. Multiple Reservoirs. You can implement multiple reservoirs to modd multiple hardware
resources, such as disks, flash ram cards, and so on Each separate physical store should be treated
asanindvidual reservoir. You need to present information about each reservoir individualy, asthe
amount and percentages of freeand used memory. Y ou can also provide operations that work on
whde reservoirs, such as backingup all the objectsin orce reservoir into anather or deleting all the
objects gored in areservoir.

You will also reed to ensure that the user interface associates each doject with the reservoir where it
is dored — typically by using reservoirs to structure the way information about the objectsis
presented, by grouping all the objects in a reservoir together. For example, most desktop GUI filing
systems dhow all thefilesin asingedisk or directory together in ore windaw, so that the
asciation between dojects and the physical device onwhich they are stored is always clear.

2. Caching and Temporary Storage. Caching can play havoc with the user's modd of the
memory space if appli cations trespasson that memory for caches or temporary storage. For
example, many web browsers (including the Strap-1t-On’s Weblivion) cache pages in user storage,
and browsers on palmtop and desktop machines $milarly maintain temporary caches in user file
storage. Theminar problem hereis that naive measurements of the amount of freespace will betoo

© 1999 Charles Weir, James Noble Page 14

Variable-Sized User Memory UNTITLED by Weir, Noble

low, as ome of the space is all ocated to caches; the major problemsis that unlessthe memory is
somehow released from the caches it canna be used for application data storage.

The CapTAIN OATES pattern describes how you can desigh a system so that appli cations release their
temporary storage when it is required for more important or permanent uses. The key to this pattern
is that when memory is low, the system shauld signal applications that may be hdding cached data.
In response to receiving the signal, any appli cations hdding cached data should rel ease the caches.

3. Fragmentation. Aswith any kind d VARIABLE ALL OCATION, reServoirs may be subject to
fragmentation. This can cause problems as the amount of memory that is reported as being

avail able may be lessthan the amount of memory that can be used in practice. So for example,

whil e the Strap-1t-On’ s file memory may have 50K freecharacters, the largest singe block might be
only 10K — nat enoughto create a 15K email message.

One way to avoid this problem is to show users information about the largest freeblock of memory
in each reservoir, rather than simply the amount of freememory. Anather approach is to implement
MEMORY COMPACTION — Say with a user initiated compaction qeration, in the same way that PC
operating systems include eplicit defragmentation perations. Unfortunately, both these
approaches compli cate the users' conceptual modd of the interface to include fragmentation.
Alternatively, you can to chocse data structures that do nd require eplicit compaction

Examples

A Psion Series 5 all ows users to store text fil es and spreadshed files in persistent storage reservoir
(call a “drive’ but implemented by battery backed up RAM). The browser interface ill ustrated in
the figure below shows the files gored in a given drive, andthe size of each file. Clicking onthe
“drive letter” in the bottom left hand corner of the screen produces a menu allowing usersto view a
diff erent reservoir.

Conf Call Questio Phone ThinkSmall Svstem
ﬁ Documents % 3K 01/08/99 20K 11/09/99 % Bk 31/10/99
; Cocs.zip Questions still ou Tute results ‘Cmtrul
ﬁ Julia 10K 25/04/99 2K 01/09/99 15 2K 04117989 @ panel
; Envisioning s, READ_ME THT (¢ Recent
ﬁ My Brisfcase 2 50T 1 o 5k Harnrea ﬁles
Featurectomy ROM
ﬁ System) 10K 08/11/99 43K 11/08/99 New
Address % remary Manage % sy .mhm folder
31K 11/09/99 gk 11/09/99 9t 20/10/949
Business mempresd i SpyPic i How
27K 11/03/99 %‘ 133K 11/09/99 % Ok 22710799 file
dres % Mote Collection Test | |n
: 1K 0&/11/99
FF % i testFonts l l U
3K 1K D6/11/99 Mon 8

The StrapltOn PC can also list al thefilesinits internal memory, and also always lists their sizes.

The Hotmail web-based mail server also uses variable sized user memory. When Hotmail li sts the
messages received by a mail account, it also lists the size of each message, tucked to the far right-
hand-side of the screen.

© 1999 Charles Weir, James Noble Page 15

Variable-Sized User Memory UNTITLED by Weir, Noble

Metscape: Hotmail Ik

File Edit Wiew Go Communicatar Help

«¢ " Bookmarks A Location: http: //Lwdfd. Lawd. hotnail men. com/cgi-bin/HoTiail7disk=216 ,.'|

@'@aﬁé—dﬂaﬂ

Back Fopgard Reload Home Search Metscape Print SECUrty Shop 5t
2
Mg :gmserwce_ E-mail alerts - instant messages
Hotmail smatersoftwarechotmaiicom Saanat

[CIENN Compose | Addresses | Folders | __ Options | _Help |

Inhox 4 messages, 4 new [Mew Hotmail | FOF Mail

N o =

P | Hotmed Staif Dec 2 1999 Welcome Mew Hotnail Userl 1k
» | James Moble Dec 21999 “Youbook is great! 1k
b | Hotmail Staff Dec 4 1999 Annoneing new MSN Hotmail services! 1k |
b | Hotmail Staff Dec 17 1999 MSN is speaking your Language 1k .

I Belect all displayed messages

Mowe To | (Move Checked Messages to Selected Folder) |
¥

| 1% & 9P @ N2

Hotmail may seem like a strange example of a “small system”, but Hotmail must support hundreds
of thousands of separate mail accounts. Because this requires a very large amount of memory to
store each user’s mail, Hotmail must limit the amount of memory required by each indvidual
account, and makes the user worry about the amount of memory their mail occupies. If an account
occupies too much memory, incoming messages are returned to sender.

© 1999 Charles Weir, James Noble Page 16

Variable-Sized User Memory UNTITLED by Weir, Noble

Known Uses

Most general purpose computers provide somekind d variable sized user memory for storing
users data— either in a special region d (persistent) primary storage, such as the PalmPil ot,
Newton, and Psion Series 5, or on secondary storage, if the form factor permits. Similarly,
multitasking computers eff ectively use variable sized user memory — users can run appli cations of
varying sizes until they run out of memory.

See also

Use VARIABLE ALL OCATION to implement variable sized user memory. MEMORY FEEDBACK Can
help the user avoid running aut of memory. The size of the reservoir may be able to be set by User
MEMORY CONFIGURATION. FIXED SizED UsER MEMORY can be an alternative to this pattern if only a
few, fixed sized dojects need to be stored.

© 1999 Charles Weir, James Noble Page 17

