
Small User Interfaces UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 1

Small User Interfaces
James Noble and Charles Weir, 1997-2000.

These patterns are part of an ongoing project to capture and document techniques for the design and
construction of systems that must function under tight memory constraints. Some patterns from this
project will be published in book form in the Addison-Wesley Software Patterns Series in 2000.

This paper contains the following patterns:

• Make the User Worry
• Fixed User Memory
• Variable User Memory

The full chapter will i nclude several additional patterns (and a proper bibliography!); the first
pattern includes an overview of all the patterns that will be included in final chapter, including these
additional patterns.

Related patterns have appeared in several conferences, including:

1. High-level and Process Patterns from the Memory Protection Society. James Noble and Charles
Weir. In Pattern Languages of Program Design 4. Neil Harrison, Brian Foote and Hans
Rohnert, editors. Addison-Wesley, 1999.

2. Patterns for Small Machines. James Noble and Charles Weir. Proceedings of the European
Conference on Pattern Languages of Program Design, Irsee, Germany. Universitäts Verlag
Konstanz. 1998

3. Secondary Storage. Proceedings of the European Conference on Pattern Languages of Program
Design, Irsee, Germany. Universitäts Verlag Konstanz. 1999

Further information about this project can be found on the web at:
http://www.cix.co.uk/~cweir/Book/DraftChapters.htm

Major Technique: Make the User Worry UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 2

 Major Technique: Make the User Worry
James Noble, Charles Weir
© Charles Weir, James Noble, June 2000
Version 4/06/00-3.

How can you manage memory in an unpredictable interactive system?

• Memory requirements can depend on the way users interact with the system.

• If you allocate memory conservatively, the systems functionali ty may be constrained.

• If you allocate memory aggressively, the system may run out of memory.

• The system needs to be able to support different users who will use the system in quite
different ways.

• Users need to perform a number of different tasks, and each task has different memory
requirements.

• The system may have to run eff iciently on hardware with greatly varying physical memory
resources.

• It’s more important that the system has suff icient capacity than that the system is easy to
use.

In many cases, especially in interactive systems, memory requirements cannot really be predicted in
advance. For example, the memory requirements for the Strap-It-On PC’s word-processing
application Word-O-Matic will vary greatly, depending the features users choose to exercise  one
user may want voice output, while another may choose a large font for file editing, and a third may
require a large amount of clip art.

The memory demands of interactive systems are unpredictable because they depend critically on
what users choose to do with the system. If you try to produce a generic memory budget, you will
over-allocate the memory requirements for some parts of the program, and consequently have to
under-allocate memory for others.

For many interactive systems, providing the necessary functionali ty is more important than making
the functionali ty easy to learn or to use. Being able to use a system to do a variety of jobs without
running out of memory is suff iciently important that you can risk making other aspects of the
interface design more complicated if it makes this possible. This is especially important because a
system’s users presumably know how they will use the system when they are actually using it, even
through the system’s designer may not no know this ahead of time.

Therefore: Make the system’s memory model explicit in its user interface, so that the user can worry
about memory.

Design a conceptual model of the way the system will use memory. Ideally, this model should be
based on the conceptual model of the system and the domain model, but providing extra information
about the system’s memory use. This model should be expressed in terms of the objects users
manipulate, and the operations they can perform on those objects, rather than the objects used
directly in the implementation of the system.

Major Technique: Make the User Worry UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 3

Expose this memory model in your program’s user interface, and let users manage memory
allocation directly — either in the way that they create and store user interface level objects, or
more coarsely, balancing memory use between their objects and the program’s internal memory
requirements.

For example, Word-O-Matic makes the user take responsibili ty for the system’s use of memory. On
request, Word-O-Matic displays the amount of memory it has available, and allows users to choose
how that memory should be allocated. If a user wantsto store a larger amount of clip-art they well
need to allocate suff icient memory to store the clip-art that they need. Word-O-Matic uses all the
otherwise unallocated space to store the document, so a user subsequently needs to work on a long
document, the user will need to reduce the amount of memory allocated to clip-art.

Consequences
The system can deliver more behaviour to the user than if it had to make pessimistic assumptions
about its use of memory. The user can adjust their use of the system to make the most of the
available memory, reducing the memory requirements for performing any particular task.
Although the way user memory will be allocated at runtime is unpredictable, it can be quarantined
within the MEMORY BUDGET, so the memory use of the system as a whole is more predictable.
Some user interfaces can even make the user worry about memory fragmentation.

However: Users now have to worry about memory whether they want to or not, so the system is
less usable. Worrying about memory complicates the design of the system and its interface, making
it more confusing to users, and distracting them from their primary task. Given a choice, users will
choose systems where they do not have to worry about memory. You have to spend programmer
effort designing a user interface that makes the memory model visible to the user.

� � � � � �

Implementation
There are number of techniques which can expose a system’s memory model to its users:

• Constantly display the amount of free memory in the system.

• Provide tools that allow users to query the contents of their memory, and the amount of
memory remaining.

• Generate warning messages or dialogue boxes as the system runs out of memory, or as the
user allocates lots of data.

• Let the user choose what data to overwrite or delete when they need more memory.

• Show the memory usage of different components in the system.

• Tell users how their actions and choices affect the system’s memory requirements.

Here are some further issues you should consider when making users worry about memory
allocation:

1. Supporting Different K inds of Users. Different users can differ widely in the roles they play
with respect to a given system, and often their memory use (and interest in or capabili ty to manage
the system’s memory use) depends upon the role they play. For example, the users of a web-based

Major Technique: Make the User Worry UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 4

information kiosk system would play two main roles with respect to the system  a casual inquirer
trying to obtain information from the kiosk, and the kiosk administrator configuring the kiosk,
choosing networking protocol addresses, font sizes, image resolutions and so on. The casual
inquirer would have no interest in the system’s model of memory use, and no background or
training to understand or manipulate it, while the kiosk administrator could be vitally concerned
with memory issues.

The techniques and processes of User Role Modelli ng from Usage-Centered Design (Constantine &
Lockwood, 1999) can be used to identify the different kinds of users a system needs to support, and
to characterise the support a system needs to provide to each kind of user.

2. General Purpose Systems. The more general a system’s purpose, the more diff icult memory
allocation becomes. A system may have to support several radically different types of users – say
from novices to experts, or from those working on small j obs to those working on big jobs. Even
the work of a single user can have different memory requirements depending upon the details of the
task performed: formatting and rasterising text for laser printing may have completely different
memory requirements to entering the text in the first place. Also, systems may need to run on
hardware with varying memory requirements. Often the memory supplied between different models
or configurations of the same hardware can vary by a several orders of magnitude and the same
program may need to run on systems with 128Kb of memory to systems with 128M or more. The
more general a system’s purposes, the more leverage there can be in making (or allowing) users to
take responsibili ty for memory use.

Examples
For example, after it has displayed its startup screen, the Strap-It-On wrist mounted PC asks its
user to select an application to run. The select an application screen also displays the amount of
memory each application will need if it is chosen. In this way, the Strap-In-On constantly provides
cues that users may need to worry about memory consumption.

Major Technique: Make the User Worry UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 5

� � � � � �

Specialised Patterns
The rest of this chapter contains five patterns that present a range of techniques for making the user
worry about the systems memory use. It describes ways that a user interface can be structured,
how users can be placed directly in control of a system’s memory allocation, and describes how the
quali ty of a user interface can be traded off against its memory use.

FIXED SIZED USER MEMORY describes how user interfaces can be designed with a small number of
user memories. Controls to access these memories can be designed directly into the interface of the
program, making them quick and easy to access. Fixed sized user memories have the disadvantages
that they do not deal well with user data objects of varying sizes, or more than about twenty
memory locations.

VARIABLE SIZED USER MEMORY allows the user to store variable numbers of varying sized data
objects, overcoming the major disadvantages of designs based on fixed sized user memory. The
resulting interface designs are more complex than those based on fixed sized memory spaces,
because users need ways of navigating through the contents of the memories and must be careful
not to exhaust the capacity.

Major Technique: Make the User Worry UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 6

MEMORY FEEDBACK , in turn, addresses some of the problems of variable sized user memory:
bypresenting users with feedback describing the state of a system’s memory use, they can make
better use of the available memory. Providing memory feedback has a wider applicabili ty than just
managing user memory, as the feedback can also describe the system’s use of memory — the
amount of memory occupied by application software and system services.

USER MEMORY CONFIGURATION extends Memory Feedback by allowing users to configure the way
systems use memory. Often, information or advice about how a system will be used, or what
aspects of a system’s performance are most important to its users, can help a system make the best
use of the available memory.

Finally, LOW QUALITY MULT IMEDIA describes how multimedia resources — a particularly memory-
hungry component of many systems — can be reduced in quali ty or even eliminated altogether, thus
releasing the memory they would otherwise have occupied for more important uses in the system.

See Also
The memory model exposed to the user may be implemented by FIXED ALL OCATION or VARIABLE

ALL OCATION — FIXED SIZE USER MEMORY is usually implemented by FIXED ALL OCATION and
VARIABLE SIZE USER MEMORY is usually implemented by VARIABLE ALL OCATION.

FUNCTIONALITY A LA CARTE [Adams 95] can present the costs and benefits of memory allocations to
the user.

A static MEMORY BUDGET can provide an alternative to USER MEMORY CONFIGURATION that does
not require users to manage memory explicitly, but that will have higher memory requirements to
provide a given amount of functionali ty.

The patterns in this chapter describe techniques for designing user interfaces for systems that have
limited memory capacity. We have not attempted to address the must wider question of user
interface design generally — as this is a topic that deserves a book of its own. Schneiderman's
User Interface Design is a general introduction to the field of interface design, and Constantine and
Lockwoods’ Software for Use presents a comprehensive methodology for incorporating user
interface design into development processes. Both texts discuss interface design for embedded
systems and small portable devices as well as for desktop applications.

Fixed Size User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 7

Fixed Size User Memory
Also known As: Fixed Number of User Memories

How can you present a small amount of memory to the user?

• You have a small amount of user-visible memory.

• Users need to store a small number of discrete items in the memory

• Every item users need to store is roughly the same size

• Users need to be able to retrieve data from the memory particularly easily.

• Users cannot tolerate much extra complexity in the interface.

Some systems have only a small amount of memory available for storing the users’ data (and
presumably only a small amount of data that users can store). This user data is often a series of
discrete items — such as telephone numbers or configuration settings where each item is the same
size. For example, the Strap-It-On needs to definitions for its voice input feature. Each macro
requires enough memory to recognise a three second spoken phrase of the user's choice, and the
commands that are to be executed when the voice macro facili ty recognises that phrase.

Users need to be able to retrieve data from memory quickly and easily — after all , that’s why the
system is going to the trouble to store such a small amount of data. For example, the point of the
Strap-it-On’s voice input macros are to make data entry more eff icient, streamlined, and “ fun to do
all day” (to quote the marketing brochure). Similarly music synthesisers store multiple ‘patches’ so
that they can be quickly recalled during a performance, and phones store numbers because people
want to dial them quickly.

One approach to this problem is to let the user choose things to store, until the device is out of
memory, when it stops accepting things. This is quite easy to implement but is unsatisfactory when
there’s only a small amount of memory. Users will tend to get the idea that the device has infinitude
of memory, and consequently will be surprised when the system refuses their requests. Also, you’ ll
need some kind of interface to retrieve things from the memory, to delete things that have already
been stored, and so on — all of which will j ust take up more precious memory space.

Therefore: Provide a small , fixed number of fixed size memory spaces, and let the user manage them
individually..

The design should make clear that there are only a fixed number of user memory spaces —
typically by allocating a single interface element (often a physical or virtual button) for each
memory. Ideally each memory space should be accessed directly via its button (or via a sequence
number) to reinforce the idea that there are only a fixed number of user memories.

The user can store and retrieve items from a memory space by interacting with the interface
element(s) that represent that user memory. Ideally the simplest interaction, such as pressing the
button that represents a user memory, retrieves the contents of the memory — restoring the device
to the configuration stored in the memory, running the macro, or dialli ng the number held in that
memory. Storing into a user memory can be a more complex interaction, because storing is
performed much less frequently than retrieval. For example, pressing a “store” button and then

Fixed Size User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 8

pressing the memory button might store the current configuration into that memory. Any other
action that uses the memory should access it in the same way.

Finally, an interface with a fixed number of user memories does not need to support an explicit
delete action from the memories: the user simply chooses which memory to overwrite.

For example, the Strap-It-On allocates enough storage for nine voice macros. This storage is
always available (it is allocated permanently in the memory budget; the setup screen is quickly
accessible via the Strap-It-On's operating system, and is designed to show only the nine memory
spaces available.

Consequences
The idea that the system has a fixed number of fixed size user memory spaces into which users can
store data is obvious from the its design, making the design easy to learn. The fixed number of user
memory spaces becomes part of users’ model of the system, and the amount of memory available is
always clear to users. Users should never experience the system running out of memory — rather,
they will j ust have to decide which user memory to overwrite. Certainly, if all memories (either full
or empty) are accessed in the same way, the system never needs to produce any error messages
explaining that the system has run out of memory. Because the number of memories is fixed, the
interface can be designed so that users can easily and quickly choose which memory to retrieve.
The graphical layout of the interface is made easier, because there are always the same number of
memories to display.

However: The user interface architecture is strongly governed by the memory architecture. This
technique works well for a small number of memory spaces but does not scale well to allocating
more than twenty or thirty memory spaces, or storing objects of more than two or three different
sizes. User interfaces based on a fixed number of user memories are generally less scalable than
interfaces based on some kind of variable allocation. Increasing the size of a variable memory may
simply require increasing the capacity of a browser or list view, but increasing the number of fixed
user memories can require a redesign of the interface, especially if memories are accessed directly.

� � � � � �

Implementation
1. Accessing Memories. There are three main interface design techniques that can be used to
access fixed size user memories — direct access, banked access, and sequential access. This
ill ustrates the difference between a pattern model and an interface design — the same pattern for
fixed sized user memories can be realised in several different ways in an actual user interface
design.

1.1. Direct Access. For a small number of user memories, allocate a single interface element to
each memory. With a single button for each memory, pressing the button can recall the memory
directly — a fast and easy operation. Unfortunately, this technique is limited to sixteen or so
memories because few interfaces can afford to dedicate too many elements to memory access.

For example, the drum machines in the ReBirth-338 software synthesiser provide a fixed size user
memory to store drum patterns. The sixteen buttons across the bottom of the picture below
correspond to sixteen memory locations storing sixteen drum beats making up a single pattern 

Fixed Size User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 9

we can see that the bass drum will play on the first, seventh, eleventh and fifteenth beat of the
pattern.

1.2 Banked Access. For between ten and one hundred elements, you
can use a two dimensional scheme. Two sets of buttons are used to access
each memory location — the first set to select a memory bank, and the
second set to select an individual memory within the selected bank.
Banked access requires fewer interface elements than direct access given
the same number of memory spaces, but is still quick to operate.

Again following hardware design, the ReBirth synthesiser can store
thirty-two patterns for each instrument in emulates. The patterns are
divided up into four banks (A, B, C, D) of eight patterns each, and these
patterns are selected using banked access.

1.3 Sequential Access. For even less hardware cost (or screen real
estate) you can get by with a couple of buttons to scroll
sequentially through all the available memory spaces. This approach is common on cheap or small
devices because it has a very low hardware cost and can provide access to an unlimited number of
memories. However, sequential scrolli ng is more diff icult to use than direct access, because more
user gestures are required to access a given memory location, and because the memory model is not
as explicit in the interface.

A ReBirth song is made up of a list of patterns. The control below plays through a stored song. To
store a pattern into a song, you select the position in the song using the small arrow controls to the
left of the “Bar” window, and then choose a pattern using the pattern selector shown above.

2, Naming Memories. Where there are more than four or five memories you can consider allowing

the user to name each memory to make it easier for users to remember what is stored in each
memory space. A memory name can be quite short — say eight uppercase characters — and so
can be stored in a small amount of memory using simple STRING COMPRESSION techniques.

There is still a trade-off between the memory requirements for storing the name and the usabilit y of
a larger number of memories, but there is no point providing a system with large numbers of
memories if users can’ t find the things they have stored in them. If the system includes a larger
amount of preset data in stored in READ-ONLY STORAGE you can supply names for these memories,
while avoiding naming user memories stored in scarce RAM or writeable persistent storage.

3. A Single User Memory Space. Systems that provide just one memory space are special cases of
fixed sized user memory. For example, many telephones have a "last number redial" feature that is
a single user memory set after every number is dialled. Similarly, many laptop computers have a
single memory space for storing backup software configuration parameters, so that the machine can
be rebooted if it is misconfigured. A single memory space is usually quick and easy to access, but
obviously cannot store much information.

4. Var iable Sized Objects. A fixed number of fixed sized memory locations does not cope well
when storing objects of varying sizes. If an item to be stored is too small for the memory space, the
extra space is wasted. If an item is too large, either it must be truncated, or it must be stored in

Fixed Size User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 10

two or more spaces (presumably wasting memory in the last overflow space), or the user must be
prevented from creating such an item in the first place.

If an interface needs to store just two or three kinds of different sized user data objects the interface
design can have a separate set of user memories for each kind of object that needs to be stored.
This doesn’ t solve the problem completely, since the size and number of the memory spaces must be
determined in advance, and it is unlikely that it will match the number of objects of the appropriate
kind that each user wishes to store.

5. Initialising Memories. An important distinction in the design of fixed size user interfaces is
whether the system supports a fixed sized number of memory spaces or a fixed sized number of
objects. The difference is that if the system has a number of memory spaces, some of the spaces
can be empty, but it doesn't make sense to have an empty object stored in a memory space. In
general, designing in terms of objects is preferable to designing in terms of memory spaces. For
example, there is no need to support retrieve operations on empty spaces if there can be no empty
spaces. For this to work, you need to find good initial contents for the objects to be stored. The
memory spaces of synthesisers and drum machines, for example, are typically initialised with useful
sounds or drum patterns than can be used immediately, and later overwritten.

One compensating advantage of having the idea of empty memories in a conceptual model is that
you can support an implicit store operation that stores an object into some empty memory space,
without the user having to choose the space explicitly. This certainly makes the store operation
easier, but (unlike a store operation that explicitly selects a memory space to overwrite), and
implicit store operation can fail due to lack of memory — effectively treating the fixed size
memories as if they were variable sized. The Nokia 2210e mobile phone supports implicit stores
into its internal phone book, but, if there are no empty memories, users can choose which memory
to overwrite.

Example
The StrapItOn PC has nine memories that can be used to store voice input macros. Each memory is
represented by one of nine large touch-sensitive areas on the StrapItOn screen. To record a macro,
users touch the screen area representing the memory where they want to store the macro  if this
memory is already in use, the existing macro is overwritten.

Fixed Size User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 11

The Korg WaveStation synthesiser contains several examples of fixed sized user memories. The
most obviously is that its user interface includes five soft keys that can be programmed by the user
to move to a particular page in the WaveStation menu hierarchy. The soft keys are accessed by
pressing a dedicated "jump" key on the front panel, and then one of the five physical keys under the
display.

The main memory architecture of the WaveStation is also based on fixed sized user memories. Each
WaveStation can store fifty 'performances', that can refer to four of thirty-five 'patches', each of
which can play one of thirty-two 'wave sequences'. Patches and performances have different sizes
and are stored in their own fixed-sized user memories. If you run out of patch storage, you cannot
utili se empty performance memories. Patch and performance memories are addressed explicitly
using memory location numbers entered by cursor keys, turning a data-entry knob, or using a
numeric keypad. Patches, performances and wave sequences can be named — performances and
patches with up to fifteen characters, wave sequences only up to seven.

� � � � � �

Known Uses
GSM mobile phone SIM cards are smart cards that store a fixed number of phone memories
containing name and number (the number of memories depends on the SIM variant). Users access
the memories by number. The same SIM cards can also store a fixed number of received SMS
(short message service) text messages — the user is told if a message could not be stored because

Fixed Size User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 12

the store overflowed. SIM cards can also store a fixed number of already read messages in a
numbered store. This store is visible to the user and accessed by message number.

An early Australian laser printer required the user to uncompress typefaces into one of a fixed
number of memory locations. For example, making Times Roman, Times Roman Italic, and Times
Roman Bold typefaces available for printing would require three memory locations into which the
ROM Times Roman bitmaps would be uncompressed, with some bitmap manipulations to get italic
and bold effects. Documents selected typefaces using escape codes referring to memory locations.
Larger fonts had to be stored into two or more contiguous locations, making the user worry about
memory fragmentation as well as memory requirements, and giving very interesting results if an
escape code tried to print from the second half of a font stored in two locations.

The Ensoniq Mirage sound sampler was the ultimate example of making the user worry. The poor
user — presumably a musician with li ttle computer experience — must allocate memory for sound
sample storage by entering two digit hexadecimal numbers using only increment and decrement
buttons. Each 64K memory bank could hold up to eight samples, provided each sample was stored
in a single contiguous memory block. In spite of the arcane and frustrating user interface (or
perhaps because of the high functionali ty the interface supported with limited and cheap hardware)
the Mirage was used very widely in the mid-1980s popular music, and maintains a loyal if eccentric
following ten years later.

See Also
VARIABLE-SIZED USER MEMORY offers an alternative to this pattern that explicitly models a
reservoir of memory in the system, and allows users to store varying numbers of variable sized
objects.

MEMORY FEEDBACK can be used to show users which memories are empty and which are full , or
provide statistics on the overall use of memory (such as the percentage of memories used or free).

Although systems' requirements do not generally specify FIXED SIZED USER MEMORIES, by
negotiating with your clients you may be able to arrange a FEATURECTOMY.

A MEMORY BUDGET can help you to design the number and sizes of FIXED SIZED USER MEMORIES

your system will support.

You can use FIXED ALL OCATION to implement fixed sized user memories.

Variable-Sized User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 13

Variable-Sized User Memory
How can you present a medium amount of memory to the user?

• You have a medium to large amount of user-visible memory

• Users need to store a varying number of items in the memory

• The items users can store vary in size

• The memory requirements for what the user will need to store are unpredictable.

Some programs have medium or large amounts of memory available for storing user data. For
example, the Strap-It-On wrist-portable PC provides a file system to allow users to store
application data. Files can vary in size from a few words to several pages, and within the bounds of
the systems memory, some users store a few large files while other users store many small files. The
behaviour of some users changes over time — one week storing many small files, the next one large
file, the next a mixture.

One approach to organising the memory would be to provide FIXED SIZED USER MEMORY. The
system could allocate a fixed number of fixed-sized spaces to hold memos the user wishes to store.
Of course, this suffers from all the problems of fixed allocation: memory spaces holding small
memos will waste the rest of the space, and long memos must somehow be spli t over a number of
different spaces. Another alternative would be to require users to pre-allocate space to store
memos, but this requires users to be able to accurately estimate the size of a new memo before it is
created, and the pre-allocation step will greatly complicate the user interface.

Therefore: Randomly allocate user objects from a reservoir of free memory.

Allow the user to store and retrieve items flexibly from the systems’ memory reservoir. The
reservoir does not have to be made explicit in the interface design — although it may be. Each item
stored in the memory should be treated as an individual object in the user interface, so that users
can manipulate it directly. You also need to provide an interface to allow the user to find particular
items they want to use, and to explicitly delete objects from the reservoir making the memory space
available for the storage of new objects.

For example, the Strap-It-On uses VARIABLE SIZED USER MEMORY for its file system. A reservoir
large enough to hold ten thousand words (about a hundred thousand characters of storage) is
allocated to hold all the users' files. When users create new files they are stored within the reservoir
until they are explicitly deleted. The file tool displays the memory used by every file in a browser
view, the percentage of free memory left in the reservoir pool in its status line, and also uses error
messages to warn the user when memory use exceeds certain thresholds (90%, 95% 99%).

Consequences
Users can store new objects in memory quite easily, provided there is enough space for them. Users
can make flexible use of the main memory space, storing varying numbers and sizes of items to
make the most of the systems capacity — effectively reducing the system’s memory requirements.
Users don’ t need to choose particular locations in which to store items or to worry about
accidentally overwriting items or to do pre-allocation, and this increases the system’s usabilit y.

Variable-Sized User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 14

Variable sized memory allocation is generally quite scalable, as it is easier to increase the size of a
reservoir (or add multiple separate reservoirs) than to increase the number of fixed size memories.

However: The program’s memory model is exposed. The user needs to be aware of the reservoir,
even though the reservoir may not be explicitly presented in the interface. The user interface will be
more complex as a result, and the graphical design will be more diff icult. Users will not always be
aware of how much memory is left in the system, so they are more likely to run out of memory.

Any kind of variable allocation decreases the predictabilit y of the program’s memory use, and
increases the possibili ty of memory fragmentation. Variable sized allocation also has a higher
testing cost than fixed sized allocation. � � � � � �

Implementation
Although a variable sized user memory can give users an ill usion of infinite memory, memory
management issues must still l urk under this façade: somewhere the system needs to record that the
objects are all occupying space from the same memory reservoir, and that the reservoir is finite.
Even if the reservoir is not explicit in the interface design, try to integrate memory use the rest of
the system and the domain model, so that the user can understand how the memory management
works. Consider using MEMORY FEEDBACK to keep the user informed about the amount of memory
used (and more importantly, available) in the reservoir ,typically by listing the amount of memory
occupied by objects when displaying the objects themselves.

A user interface based on variable sized user memory is more sophisticated than a similar model
buil t on fixed sized user memory. A model of variable sized user memory must include not only
empty or full memory locations, but also a more abstract concept of "memory space" that can be
allocated between newly created objects and existing objects if their size increases. The objects that
can be stored in user memory can also be more sophisticated, with varying sizes and types.

Here are some further issues to consider when designing user interfaces that provide variable user
memory spaces:

1. Multiple Reservoirs. You can implement multiple reservoirs to model multiple hardware
resources, such as disks, flash ram cards, and so on. Each separate physical store should be treated
as an individual reservoir. You need to present information about each reservoir individually, as the
amount and percentages of free and used memory. You can also provide operations that work on
whole reservoirs, such as backing up all the objects in once reservoir into another or deleting all the
objects stored in a reservoir.

You will also need to ensure that the user interface associates each object with the reservoir where it
is stored — typically by using reservoirs to structure the way information about the objects is
presented, by grouping all the objects in a reservoir together. For example, most desktop GUI fili ng
systems show all the files in a single disk or directory together in one window, so that the
association between objects and the physical device on which they are stored is always clear.

2. Caching and Temporary Storage. Caching can play havoc with the user's model of the
memory space if applications trespass on that memory for caches or temporary storage. For
example, many web browsers (including the Strap-It-On’s Weblivion) cache pages in user storage,
and browsers on palmtop and desktop machines similarly maintain temporary caches in user file
storage. The minor problem here is that naïve measurements of the amount of free space will be too

Variable-Sized User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 15

low, as some of the space is allocated to caches; the major problems is that unless the memory is
somehow released from the caches it cannot be used for application data storage.

The CAPTAIN OATES pattern describes how you can design a system so that applications release their
temporary storage when it is required for more important or permanent uses. The key to this pattern
is that when memory is low, the system should signal applications that may be holding cached data.
In response to receiving the signal, any applications holding cached data should release the caches.

3. Fragmentation. As with any kind of VARIABLE ALL OCATION, reservoirs may be subject to
fragmentation. This can cause problems as the amount of memory that is reported as being
available may be less than the amount of memory that can be used in practice. So for example,
while the Strap-It-On’s file memory may have 50K free characters, the largest single block might be
only 10K – not enough to create a 15K email message.

One way to avoid this problem is to show users information about the largest free block of memory
in each reservoir, rather than simply the amount of free memory. Another approach is to implement
MEMORY COMPACTION — say with a user initiated compaction operation, in the same way that PC
operating systems include explicit defragmentation operations. Unfortunately, both these
approaches complicate the users' conceptual model of the interface to include fragmentation.
Alternatively, you can to choose data structures that do not require explicit compaction

Examples
A Psion Series 5 allows users to store text files and spreadsheet files in persistent storage reservoir
(call a “drive” but implemented by battery backed up RAM). The browser interface ill ustrated in
the figure below shows the files stored in a given drive, and the size of each file. Clicking on the
“drive letter” in the bottom left hand corner of the screen produces a menu allowing users to view a
different reservoir.

The StrapItOn PC can also list all the files in its internal memory, and also always lists their sizes.

The Hotmail web-based mail server also uses variable sized user memory. When Hotmail li sts the
messages received by a mail account, it also lists the size of each message, tucked to the far right-
hand-side of the screen.

Variable-Sized User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 16

Hotmail may seem like a strange example of a “small system”, but Hotmail must support hundreds
of thousands of separate mail accounts. Because this requires a very large amount of memory to
store each user’s mail , Hotmail must limit the amount of memory required by each individual
account, and makes the user worry about the amount of memory their mail occupies. If an account
occupies too much memory, incoming messages are returned to sender.

� � � � � �

Variable-Sized User Memory UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 17

Known Uses
Most general purpose computers provide some kind of variable sized user memory for storing
users’ data — either in a special region of (persistent) primary storage, such as the PalmPilot,
Newton, and Psion Series 5, or on secondary storage, if the form factor permits. Similarly,
multitasking computers effectively use variable sized user memory — users can run applications of
varying sizes until they run out of memory.

See also
Use VARIABLE ALL OCATION to implement variable sized user memory. MEMORY FEEDBACK can
help the user avoid running out of memory. The size of the reservoir may be able to be set by USER

MEMORY CONFIGURATION. FIXED SIZED USER MEMORY can be an alternative to this pattern if only a
few, fixed sized objects need to be stored.

