Patterns for Object Transport

Klaus Marquardt

Käthe-Kollwitz-Weg 14, D-23558 Lübeck, Germany

Email: marquardt@acm.org

Copyright © by Klaus Marquardt

Abstract

In distributed systems, objects can be transported and addressed via network connections. Object transport patterns help to cross the mismatch between objects and a flat transport presentation, and support incremental development.

Peripheral Protocol Definition describes a process how to define the protocol per class and how to allow extending the distributed application during development. Protocol Backbone is an anti-pole to this, resolving similar forces to a different solution. Several process patterns help with compromising between these poles. For the implementation of a peripheral protocol, Transparent Remote Access describes a technical framework for message definition, and transparent sending and receiving.

Introduction

Most complex systems are faced with the necessity to transport data between different nodes or devices. The transport is done by networks or simple peer to peer connections (e.g. serial interfaces) where several layers [ISO/OSI
] are defined and implemented.

Each application needs to define which kind of data it would like to transport, and which action the transported information should initiate. In object oriented applications, this data and action are described together. The challenge is to match application objects with network messages.

This paper presents process patterns for approaching this challenge, and a design pattern that helps implementation along one of the suggested processes. Both main chapters are accompanied by the fictitious LabPlug example introduced below.

[image: image1.wmf]LabPlug

LabHost

Other

Workstation

LabString

Quickalyze

Other Analyzer

Quickalyze

Quickalyze

Other Analyzer

HIS

Mechanical Connection

The two major process approaches are introduced by Peripheral Protocol Definition and Protocol Backbone. These two solve the same problem with a different weight between similar forces. The feasible compromises between them are reflected in subsequent patterns.

Peripheral Protocol Definition is typically implemented using a number of design patterns. An infrastructure framework that combines multiple design patterns is described in this paper: Transparent Remote Access. Transparent Remote Access is based on patterns like Proxy [Gamma+94], Forwarder-Receiver [Buschmann+96], and Object Synchronizer [Silva+00].

Example: The LabPlug System

The fictional LabPlug system integrates multiple laboratory devices on local workstations. Different local workstations exchange data with a host system. The system consists of computers on three different levels:

· The laboratory devices (analyzers, probe transporters, etc). They run real time operation systems and may contain different processors themselves.

· The local workstation. It runs a PC operating system and connects to multiple networks and interfaces to control a number of laboratory devices.

· A laboratory host. The Laboratory Information Systems (LIS) host collects data from all local workstation, and links the laboratory to a company or hospital information system (HIS).

[image: image2.wmf]Peripheral Protocol

Definition

Protocol Backbone

Transition of View

Transparent

Remote

Access

Interpretable Protocol

Process

per

Scope

Manufacturer Records

Thesis

/

Antithesis

Synthesis Options

Implementation

Practice

The current project develops two laboratory devices, the local workstation (LabPlug) and the laboratory host (LabHost). The two lab devices are a new probe analyzer that reduces the time for analyses (Quickalyze), and a distribution mechanism (LabString) that can connect multiple Quickalyzes and future mechanical compatible analyzers. LabPlug also connects to several already available lab devices (analyzers and a special printer), and to a HIS.

One aspect that guides the current development effort is that future projects will develop further lab devices which should integrate with the LabPlug workstation. Future extension projects to the LabPlug workstations are expected, in which further lab devices are integrated.

The Process of Protocol Definition

This first pattern section focuses on process. Within distributed software, the process how a protocol is defined is at the heart of the development process, and frequently predestines further development. Two extreme positions are given by Protocol Backbone (PB), a protocol centered approach, and by Peripheral Protocol Definition (PPD) respectively, a responsibility based approach.

As always, real life’s wisdom lies in compromises. Any project shipping products that have a long life far beyond the projects end would like to gain all advantages: Development free of restrictions and fast growing; products stable and reusable by printed manual. The later patterns in this chapter give some process techniques that combine the benefits and liabilities of the extreme positions. These techniques can be combined, and are occasionally referred to as “compromise patterns”.

Pattern : Peripheral Protocol Definition

[image: image3.emf]Message

ReceiverRegistry

register(arg : Receiver&) : void

unregister(arg : Receiver&) : void

dispatch(arg : Message) : bool

Receiver

<<A>> handle(arg : Message) : bool

<<A>> getId() : int

Channel

send(arg : Message)

receive(arg : Message&)

Proxy

<<A>> getId() : int

Growing Protocol, Successive Protocol Definition

[image: image4.emf]ActiveObject

<<A>> callOne() : void

<<A>> callTwo(arg : Serializable) : void

<<Interface>>

ActiveObjectImplementation

callOne() : void

callTwo(arg : Serializable) : void

Client

<<Role>>

The system under construction is distributed among different processors or processes.

The distribution mechanism can be anticipated or is already defined, and will be based on transport channels or sessions. Important key application objects are waiting to be discovered.

The development team is large and capable of dealing with different aspects at the same time.

Uncertainty about application domain, or changing requirements. The exact kind and amount of transport is not known.

[image: image5.emf]ActiveObject

<<Interface>>

ActiveObjectProxy

getId() : int

callOne() : void

callTwo(arg : Serializable) : void

ActiveObjectImplementation

Proxy

(from Transport)

ActiveObjectReceiver

getId() : int

handle(arg : Message) : bool

unpackCallOne(arg : Message) : void

unpackCallTwo(arg : Message) : void

Receiver

(from Transport)

ReceiverRegistry

(from Transport)

call via interface

Data needs to be updated consistently on different processors. Services that are running on a different processor need to be accessible.

Only flat messages can be transported. Objects need to be transmitted or be accessible across this message presentation.

· The system evolves and is not completely describable in advance.

· Different aspects of the application and its technical infrastructure should be developable independently.

· The limitations of the distribution must not hinder the discovery and late changes to application domain objects.

· The process should not prescribe a specific implementation.

· System parts must be integrated.

· The protocol has to be published for access by other parties.

· Maintenance demands a single entry point for changes.

Define the application first. Let the protocol follow. Define the protocol for each application class separately, and maintain it in the application implementation only.

Each application class that is needed in different system devices is derived from Serializer [Riehle+98] or a simplified variant of it. Transport messages consist of one or multiple serialized objects, and are send to a receiving object defined with Transparent Remote Access. For data synchronisation, some remote objects serve as Synchronizer.

The definition of the messages lies with the objects now. It is directly present in code, and not in a separate document.

The process of peripheral protocol definition…

… anticipates extension
· Additional objects can be developed and added after parts of the application are ready (and possibly shipped);

· Software can evolve without depending on HW or other systems.

· No deep domain knowledge is required at project start.

… is independent of technical implementation
· Solution bases on well-known ingredients (like Serializer).

· Different aspects (domain, persistence, communication, user interface) can have different development speeds.

· Problems are solved independent of each other.

· Part of the application logic can be executed on client side.

· Point of execution (location of server) is transparent to clients.

… anticipates integration
· Misunderstanding or misinterpretation of transported data is avoided by explicit coupling to objects and responsibilities
.

· The code is always consistent with the protocol.

… does not interfere with further development practices
· Classes are testable in isolation.

· Demonstration of milestones is simple, Progress is visible early.

· Application drives project.

· Risk reduction: Development takes only steps that are known to be working.

… inhibits protocol closure
· Versioning requires a strong set of rules and restrictions.

· Protocol can not be easily published.

· No single instance can decipher all messages.

· Depending on the implementation, no instance can decipher a complete message. Each object knows only a part of it, and knows the “next” object responsible for interpreting the next part.

· Except when meta-information is available, a network monitor can not be build instantly as no complete protocol definition is centrally available. (Can only be build when system is ready.)

… requires different management.

· Kind of coupling: System is build around shared application code instead of a predefined backbone protocol.

· When this process is not close to your previous process, the following irritation may slow down development speed.

· Developing code that is shared among different platforms requires increased effort.

· Whole systems of independent processors are hard to develop. A known protocol could be a strong back bone for development.

· Distributed teams are hard to manage. The common approach of assigning a processor to a team does not work.

· Inexperienced OO developers may feel insecure with this approach and need guidance or coaching.

… still leaves gaps
· Real time issues are not explicitly covered.

· Performance tuning can not take place on this layer due to the lack of a central instance.

The key decision to make is whether this Growing Application process is preferred against a Protocol First process (see Protocol Backbone). The implied distributed responsibility matches well with object oriented principles like encapsulation, responsibilities, and classes confirming to the Open-Closed Principle [Meyer97].

Make sure that you have one growing project, and no distributed team. If the project has a history, check whether some of the “compromise” patterns in this chapter can help you. If the team is distributed, either take measures to get it together very frequently (physically or virtually) so that it can be treated as one team, or split the tasks and responsibilities on a large grained level (like processors, see Protocol Backbone). This implies some process compromises.

If it is likely that your product will evolve in the future, and be integrated with further software via network, consider to apply the compromise patterns. They help future development with published protocols. After all, it might be you who is in charge then.

The order and timing of tasks is an important issue. With PPD the domain layer, the definition of the objects that are really transported, is on the critical path.

Peripheral Protocol Definition supports an XP [Beck99] like development style: focus on customer value, fearless changes, corrections as soon as need identified.

Team organization: If you are faced with teams organized per processor, try to change this to a more application oriented distribution of responsibilities. When you are not able to change this, e.g. because of interdependencies with hardware devices, apply Protocol Backbone or a compromise pattern at least for those teams and its interfaces.

Existing published protocol: This is a common project boundary. You simply must stick to the protocol, except where it is insufficient for your needs, and this insufficiency is acknowledged by the protocol owner. If the existing protocol was careful enough to apply one of the Manufacturer Records pattern, you can apply PPD within the gaps. Otherwise, you have to change the protocol – which may become the major task of your project.

Technical issues to take care of:

Implementation issues of Serializer [Riehle+97] also apply here.

Shallow versus deep copy. Arguments in transported data or remote calls are necessarily deep. With Synchronizers [Silva+00], referenced Serializables passed as arguments may also be shallow.

Existence of objects. Remotely addressable objects must exist on client and server side alike. This requires a mechanism or policy for creating corresponding objects or object hierarchies. Remote calls can partly become shallow when the existence of specific application objects can be presumed on both sides.

Transport presentation of data.

· A stream format is easy to write and read. Additionally, human debuggers have a change of understanding. Item order important.

· A binary format requires least bandwidth, and is also easy to create with Serializer. On the dark side, it is not interpretable outside of the intended receiver. Item order important.

· XML based format has same advantages as stream, but allows for easy interpretation even outside of initial project. It is verbose though. Item order arbitrary, version conflicts less sharp.

Performance tuning. Should not be done on this layer, but preferably in a lower layer. Measures to reduce the required bandwidth include Multi object messages and compressed binary format.

Timing aspects are covered by few transport mechanisms, and on application level only implicitly.

Little vs. big endian. This is an issue in embedded environments. By default use the network byte order (TCP/IP: big). In heterogenous environments with different networks, pick one and stick with it for all messages.

ID mechanisms. Each message needs a unique identification to reach its receiver (with the license to decipher), even on application level (see implementation patterns).

Versioning aspects. The protocol can easily grow during development, but hardly be modified after product shipping. As the shared code defines the protocol, interacting devices need to use the same code baseline. Recommended: Ignore unknown messages. Recommended: reserve ID range for future use (see “Manufacturer Records”)

Ports on TCP/IP inherently presume and support PPD, though on a different level (of OSI/ISO): Messages for different ports do not interfere or assume possible interpretation.

Corba’s IDL [Siegel96]. Versions: Each changed class is treated as new.

DCOM. Versions: Each class and function is versioned and can only be called with reference to a version. Interfaces of former versions must remain available.

Textbook example: Traffic System [Booch94, chapter 12.2]

Serializer, Transparent Remote Access. These provide the necessary technical infrastructure to support the process.

Protocol Backbone. Either of these approaches may seem natural at first, but the other one definitely requires serious consideration. Compromises are possible depending on the projects conditions.

Protocol Backbone is more common in embedded systems.

Pattern : Protocol Backbone

Central Protocol Definition, Protocol-First Design

The system under construction is distributed among different processors or processes.

The distribution mechanism can be anticipated or is already defined, and will be based on transport channels or sessions. Important key application objects are waiting to be discovered.

The development team is large and capable of dealing with different aspects at the same time.

Data needs to be updated consistently on different processors. Services that are running on a different processor need to be accessible.

Only flat messages can be transported. Objects need to be transmitted or be accessible across this message presentation.

· The protocol has to be published for access by other parties.
· The process should not prescribe a specific implementation.

· Software development is coupled to hardware development.

· System parts must be integrated.

· The system evolves and is not completely describable in advance.

· Different aspects of the application and its technical infrastructure should be developable independently.

· Maintenance demands a single entry point for changes.

Define the protocol first. Let the application follow.
The protocol is the backbone of the application. All messages between all processors are defined before production code is developed. Each processor in development must conform to it.

The process of Protocol-First Design …

… inherently supports publishing the protocol
· Protocol can easily be published and referenced.

· Versioning requires a strong set of rules and restrictions.

· Defining such a protocol is tedious, especially among large or distributed teams.

· Be honest: The first version of a protocol does not work.

… is independent of technical implementation
· Devices can be addressed without knowing implementation details like code or libraries.

· Solution bases on well known ingredients.

· A central protocol definition addresses several technical issues that else are hard to establish, like Shallow versus deep copy, Existence of objects, ID mechanism.

… anticipates hardware/firmware based integration
· Any external can interpret messages. Semantic network monitors are possible.

· Testing against a black box reference is possible. Test devices can be created in advance of the product. Manufacturing department can test.

· Different devices could be developed in parallel with minimal coupling.

· Risk: Protocol can not be proved to be correct, prove comes only after integration of the whole system.

… ignores responsibilities
· Objects follow record contents

· Integration is “big bang”.

… hinders effective maintenance

· Changes to the protocol affect most other software. Alternative encapsulation is costly.

· The code may be inconsistent with the protocol definition, especially when protocol changes are necessary.

· Late additions are not possible.

· Mistakes can hardly be corrected after shipping.

… requires different management.

· The boundaries between different (sub-) projects are easy to spot.

· Kind of coupling: System is build around a predefined backbone protocol instead of shared application code.

· When this process is not close to your previous process, the following irritation may slow down development speed.

· A deep understanding of the domain is required.

· SW evolution is bound to HW devices and network connections

The key decision to make is whether this Protocol First process is preferred against a Growing Application process (see Peripheral Protocol Definition). The documented project boundary is a great help for separating different projects from each other, and let them evolve independently.
The early protocol definition is especially useful when the hardware is also under development, and you want to keep hardware and software development for one processor within one team, while other processors are developed by other teams.

Two major risks of this process must be addressed explicitly:

Keep yourself from anticipating too much. If at all possible, leave gaps in the protocol definition where you are insecure, have incomplete knowledge, or expect late extensions (see Manufacturer Records).

Keep a focus on integration to prevent the independent proceeding project from drifting apart. Your project plan must foresee early milestones that integrate major components from both sides of each message. Keep in mind that transported data does not describe behavior or responsibilities of the connected components.

The subsequent process patterns help to avoid some of the liabilities by compromising with PPD practices.

Tight schedule or insecure project funding. If you are faced with the necessity to produce usable results as soon as possible, a light process like XP with a focus on immediate customer value might be most appropriate for you. A protocol published before and production code is of no value, if the project might get cancelled before delivery.

Experienced team. If the developers on your team are seasoned OO developers, they might not support this process.

Technical issues to take care of:

Transport presentation of data.

· A stream format is easy to write and read. Additionally, human debuggers have a change of understanding. Item order important.

· A binary format requires least bandwidth, and is also easy to create with Serializer. On the dark side, it is not interpreatable outside of the intended receiver. Item order important.

· XML based format has same advantages as stream, but allows for easy interpretation even outside of initial project. It is verbose though. Item order arbitrary, version conflicts less sharp.

Performance tuning. Should not be done on this layer, but preferably in a lower layer. Measures to reduce the required bandwidth include Multi object messages and compressed binary format.

Timing aspects are covered by few transport mechanisms, and on application level only implicitly.

Little vs. big endian. This is an issue in embedded environments. By default use the network byte order (TCP/IP: big). In heterogenous environments with different networks, pick one and stick with it for all messages.

Telecommunications
.

Hitachi
 analyzer family.

Example
Transmission of a logbook entry from existing analyzers is already defined as:

struct logEntry {

 int msgId = 173;

 int severity;

 int sourceId;

 char[52] text;

};

Peripheral Protocol Definition. Either of these approaches may seem natural at first, but the other one definitely requires serious consideration. Compromises are possible depending on the projects conditions.

Peripheral Protocol Definition is more common in Client/Server systems.

Process Per Scope

The project under development consists of several devices with different properties, and connects to devices also used by other projects.

Neither Peripheral Protocol Definition nor Protocol Backbone are appropriate for the whole project.

The different interfaces require different processes, matching either close to PPD or to PB.

Follow different processes for different devices within the (large) system.

· Advantages of Peripheral Protocol Definition and of Protocol Backbone for each interface between devices.

· Some developers will have to deal with both process extremes on the same time.

For each interface, determine which of the forces of PPD and PB match closer to that interface. After a decision about the used process is made, stick to it. Compromise by applying any of the other compromise process patterns, but do not introduce irritation by unnecessary process changes.

Example
The protocols between LabPlug and the new components, LabHost, LabString, and Quickalyze are new and subject to development. For maximum development efficiency, they are developed applying PPD.

For the connections to already available analyzers, that were developed by the same company, the available protocol code is used. For third party analyzers, LabPlug relies on their published protocols.

Pattern : Transition of View

Initial development effort, protocol must be published afterwards.
Neither Peripheral Protocol Definition nor Protocol Backbone are appropriate for the whole project.

While the project is under way, technical forces demand Peripheral Protocol Definition. When the products are shipped, every customer demands for Protocol Backbone.

Change the view on the protocol at the project’s end. Development starts with Peripheral Protocol Definition. When the application is known and ready to ship, the developed protocol is collected and published. From this time it serves as a Protocol Backbone for future development.

· Advantages of Peripheral Protocol Definition at project start.

· Protocol can be published afterwards.

· Future development is bound to published Backbone.

· Published parts can not be changed, in order to avoid versioning problems.

Start to observe protocol changes already during development. Check whether and when changes to which protocol parts are necessary. Instable protocol definitions near the project end are an indicator of too little understanding. Try to release only the considerably stable protocol parts, the others may be published on a more informational base.

When releasing the protocol, you may want to separate the serialising code from the domain object code, making it reusable separately.

Medibus [Medibus].

Example
While the protocols between LabPlug and LabHost, and between LabPlug and Quickalyze were developed with a PPD process, both the LabHost and Quickalyze must be accesible by future workstations as well. Thus the developed protocol is frozen at projects delivery and published.

The LabString probe conveyor system will never be used without a LabPlug workstation, so this protocol is not subject to Transition of View.

Pattern : Manufacturer Records

You are insecure about your application knowledge, observe unstable protocol definitions, or expect further extensions. The once defined Protocol Backbone is considered too restrictive.

Neither Peripheral Protocol Definition nor Protocol Backbone are appropriate for the whole project.

Protocol must be published but likely requires changes in the future.

Mark some fields in transport messages for future use, or reserve complete records for future products. Allow subsequent projects to fill the messages with specific meanings.

New products can apply Peripheral Protocol Definition on their protocol parts. Later, you could (again) apply Transition of View.

· Protocol can be published.

· Further development can apply Peripheral Protocol Definition on protocol additions.

· Only protocol additions are possible, no changes.

· Extensions from different follow-on products may interfere unnoticed, even though a “backbone” was in place.

· Extensions from different follow-on products can not be combined, and not be interpreted by other products

Reserve an ID space for extensions. Consider using a variable length free text field as message identifier, to avoid that different extensions interfere with each other.

For each major extension that would increase the product value, if only it was understood by other products as well: consider changing the published protocol by adding your manufacturer records officially.

ASTM [ASTM].

Example
Although published, the protocol between LabPlug and LabHost has some specified gaps with reserved Identifiers. These were foreseen because future workstation may demand other functionality of the host or provide more information than the current LabPlug system.

The protocol of the Quickalyze device is not expandable, as the functionality is well defined by the chemical processes and their properties.

Pattern : Interpretable Protocol

A peripheral defined protocol needs to be interpreted by external devices. No Backbone can be provided.

Neither Peripheral Protocol Definition nor Protocol Backbone are appropriate for the whole project.

Protocol must be published but remain flexible. Different Protocol versions must be understandable.

Send the data together with a semantic description what the data means (meta data). Versioning issues can be resolved with a protocol that can be interpreted by instances that were not developed in the initial project. Here even part information can be transmitted.

· Advantages of Peripheral Protocol Definition at project start.

· Protocol can be published.

· Protocol interpretation possible for any receiver.

· Protocol is rather verbose.

· Simple Serializer function is replaced by an interpreter. Significantly higher development and run time effort.

Stick to emerging standards like XML that help defining and implementing the interpreter and the transmitted data format.

GP-IB (HP-IB) based protocols, like [HP83]. XML based protocols.

Example
To avoid major version conflicts, the protocol between LabPlug and LabHost marks all fields with their description. This is especially useful as both components have different lifetimes within the same installations, and one LabHost may need to connect to different versions of workstations.

Implementation Practices for Peripheral Protocols

The process must be backed by implementation practices that support the desired benefits. For a protocol backbone, practices like a large document or header file are common. Especially the peripheral definition needs a somewhat more sophisticated technical framework. The effort spend here pays back in other aspects, namely the positive consequences of PPD.

Pattern : Transparent Remote Access

Peripheral Protocol Definition.

Each message (whether object or not) needs a sender and a receiver. These are classes?

· Domain class users must not depend on transport facilities.

· Separate responsibilities between classes.

· Implementation steps must be easy to understand and apply.

Address only remote objects. Use Proxies to convert the call into a transport message; use forward-receiver to send this message to the real implementation.

An infrastructure for message transportation, multiplexing, and interpretation is required. On this infrastructure, application specific classes are build.

Each domain class is split in several classes with different responsibilities. The interface is separated from the implementation; the implementation resides in one specific processor or process. For addressing this implementation from remote, this process offers a specific receiver class that converts incoming messages into method calls. Other processes access the implementation through a Proxy that packs the method call and its arguments into a message. The Proxy and the receiver are developed together to achieve a common identification and interpretation of the message contents.

For a basic functionality these classes are sufficient. Further steps can be taken to allow for factoring of Proxies, and for return values on remote method calls.

· Transport facilities are hidden from domain class users.

· Clear dependency structure

· Clear responsibilities per object

· Further active objects can be added anytime

· A cookbook for implementation or even generation can be supplied

· A lot of technical infrastructure is required

Infrastructure: The infrastructure consists of a Forwarder-Receiver mechanism or channel interface that can transport messages between different nodes. When different transport mechanisms (networks) are used within the system, an Abstract Session [Pryce00] can help to encapsulate them. Furthermore, base classes are needed for Proxy and Receiver that send respectively receive messages. The messages are transported via the above channel interface, and have an application bound identification each.

Optionally, a class ReceiverRegistry is needed that dispatches messages on one channel to different receivers. This registry can be omitted when each channel connects to a single receiver only. When the channel interface offers an Observer interface, the registry becomes an observer for incoming messages.

Step 1: Define the object that you need to make available independent of the processor or process. Separate the interface by making it an abstract class (protocol class a la Lakos [Lakos96]: no members), and let the implementation derive from it. Take care that all functions do not return any values or references, and take as parameters only fundamental or serializable types. All clients access the interface class.

Result: two classes specific to the remotely addressable object: an interface and a derived implementation.

Step 2: For the client side, derive a Proxy class that implements each call by creating a network message and forwarding it (via Forwarder-Receiver) to the server side. For the server side, create a specific receiver class that unpacks the message back into function arguments, and calls the implementation class.

To make this step work, you need to define two ID’s. The first identifies the addressed remote object, and the Proxy and its equivalent Receiver have to agree on it. This ID needs top be unique for each remotely accessible object. The second ID is internal to the object and identifies the called function. On the server side, you need to register all Receivers by their respective IDs to forward the network message from the network listener to the correct Receiver.

Result: One specific Proxy class derived from the interface, one specific Receiver class that addresses the interface. One or two header files defining the ID’s.

Step 3: Create a factory for the client side that creates the Proxy and returns an Interface. On the server side, make sure that an instance of both the Receiver and the Implementation is created, registered, and that the Receiver has access to the Implementation (e.g. via a Factory or Trader).

Result: You can now call functions at an object that may be anywhere in the system, with the only precondition that you have a transport channel available.

To make the service more attractive, you can opt to add further steps:

Step 4: To receive return values from such a server object, define a second remotely addressable object. This time the client – server sides are exchanged. The initial server object answers to a distinct object, that is represented here as a Proxy to a “Server Answer” object whose implementation resides on the clients side.

Result: You have a triangle of classes. The client processor gets an answer, but to a different instance than you originally addressed.

Step 5: You can combine both interfaces to a single one, that resides on the clients side, maintains instances of the “Question Proxy” and the “Answer Implementation”, and keeps track of copying data and references, and the timing constraints. You need to define a thread or task context for this responsibility (except you can afford to exclusively wait).

Result: You just re-implemented a part of the CORBA infrastructure, the remote call facilities. Admittedly, CORBA’s IDL is a lot handier and less effort, as it generates most of the required code. This implementation makes most sense when you can afford not to go down to step five, and/or have no CORBA implementation available in your system.

Example

LabPlug, Quickalyze, LabString, and the LabHost may share code, and define their own protocol. One of the shared classes is LogEntry, and the LogBook. Of the LogBook, only LabPlug and LabHost have implementations. The analyzer and the conveyor forward their entries directly to the LabPlug implementation.

class LogEntry : public Serializable {

 public:

 LogEntry(int severity, int sourceId, const string& text);

 int severity() const;

 int sourceId() const;

 string text() const;

// inherited:

 virtual readFrom(Message&);

 virtual writeTo(Message&);

};

class LogBook {

 public:

 virtual addEntry(const LogEntry&) = 0;

};

At the Proxy looks like this:

class LogBookProxy : public Proxy {

 public:

 LogBookProxy(Channel& aChannel) : Proxy(aChannel) {};

 addEntry(const LogEntry& anEntry) {

 m_message.reset();

 m_message.setId(LOG_BOOK, ADD_ENTRY);

 m_message << anEntry;

// Serializable provides shift operators

 send(m_message);

 }

};

At LabPlug, a specific receiver is implemented and registered.

class LogBookReceiver : public Receiver {

 public:

 LogBookReceiver(LogBook& theImpl) : Receiver(LOG_BOOK), m_impl(theImpl)

 {}; // Receiver base class cares for registration

 handle(Message& msg);
// dispatches to function

 private:

 LogBook& m_impl;

// reference to the implementation

 addEntry(Message& msg) {

 LogEntry myEntry;

 Msg >> myEntry;

 m_impl.addEntry(myEntry);

 };

};

Corba.

[Martin96] gives a textbook example of several important aspects.

PPD. Proxy. Forwarder-Receiver.

Conclusion

The patterns form a recipe to create distributed applications in heterogeneous environments. Especially where ready-to-use products like CORBA or DCOM are not available like in most embedded systems, developers can create their own powerful mechanism for distributed object transport and remote access.

The patterns do not fully exploit all aspects that remote server processes would require. You may have noticed the missing answer to a service request. These gaps can be filled by combining the existing patterns. Unfortunately it still requires manual creation of further classes, unlike existing mechanisms as IDL that would automize this work.

The central triangle consists of Peripheral Protocol Definition, Serializer [Riehle+96], and Transparent Remote Access. Together they guide crossing the mismatch between objects and flat transport messages in a similar manner as OO-DBMS cross the gap between objects and flat storage.

Acknowledgements

I would like to thank my colleagues at Dräger Medizintechnik GmbH for their comments on early drafts. Many thanks are due to Manfred Lange, the EuroPLoP 2000 shepherd of this paper, for his detailed and timely comments.

References

ASTM
E1238 Specification for Transferring Clinical Laboratory Data Messages Between Independent Computer Systems. In: Annual Book of ASTM Standards, Vol. 14.01, American Society for Testing and Materials

Beck99
Kent Beck: Extreme Programming Explained. Embrace Change, Addison-Wesley 1999

Booch94
Grady Booch: Object Oriented Analysis And Design. With Applications. Second Edition, Addison-Wesley 1994

Buschmann+96
Buschmann, Meunier, Rohnert, Sommerlad, Stal: Pattern-Oriented Software Architecture. A System of Patterns, Wiley 1996

Gamma+94
Gamma, Helm, Johnson, Vlissides: Design Patterns, Addison-Wesley 1994

HP83
Hewlett-Packard: HP 7475A. Interfacing and Programming Manual, Hewlett-Packard 1983

Lakos96
John Lakos: Large-Scale C++ Software Design, Addison-Wesley 1996

Martin96
Robert Martin: Designing Object Oriented Applications Using the Booch Method, Prentice Hall 1996

Medibus
Dräger RS 232 MEDIBUS. Protocol Definition. Drägerwerk AG Order No. 90 28 258

Meyer97
Bertrand Meyer, Object Oriented Software-Construction. Second Edition, Prentice Hall 1997

Pryce00
Nat Pryce: Abstract Session. In: Pattern Languages of Program Design, Volume 4 (chapter 7), Addison-Wesley 2000

Riehle+98
Riehle, Siberski, Bäumer, Megert, Züllighoven: Serializer. In: Pattern Languages of Program Design, Volume 3 (chapter 17), Addison-Wesley 1998

Siegel96
Jon Siegel: Corba. Fundamentals and Programming, Wiley 1996

Silva+00
Silva, Pereira, Marques: Object Synchronizer
. In: Pattern Languages of Program Design, Volume 4 (chapter 8), Addison-Wesley 2000

Context

Problem

Forces

Solution

Consequences

Context

Counterindications

Known Uses

Related Patterns

Context

Problem

Forces

Solution

Consequences

Implementation

Known Uses

Related Patterns

�

�

Implementation

Problem

Problem

Problem

Consequences

Solution

Forces

Problem

Context

Forces

Implementation

Known Uses

Known Uses

Implementation

Forces

Implementation

Extensions

Implementation

Known Uses

Counterindications

Technical Implementation

Technical Implementation

Context

Consequences

Consequences

Solution

Consequences

Solution

Solution

Forces

Related Patterns

Known Uses

Implementation

Context

Consequences

Solution

Forces

Problem

Context

Also Known As

Also Known As

�PAGE \# "'Seite: '#'�'" ��Reference missing

�PAGE \# "'Seite: '#'�'" ��by binding the data closely to the object; more exactly: by not removing the link in the first place

�PAGE \# "'Seite: '#'�'" ��Reference missing

�PAGE \# "'Seite: '#'�'" ��Reference missing

�PAGE \# "'Seite: '#'�'" ��What have we gained? What is still missing? What does related work provide? Where do we go from here?

�PAGE \# "'Seite: '#'�'" ��Missing references for: ISO/OSI, DCOM, Hitachi911, Telecommunications

�PAGE \# "'Seite: '#'�'" ��not really what I meant, is too detailed. Maybe I provide a thumbnail of the more general pattern I have in mind.

Patterns for Object Transport © Klaus Marquardt

page 1
Patterns for Object Transport © Klaus Marquardt

page 11

