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1 Introduction

Management of software and hardware resources is important, especially in
distributed applications. Resources such as file handles and database cursors
are in limited supply. The available number may depend on the machine’s load
and configuration, and may not be known in advance.

In this context we will define a resource to be anything that is shared —
by users, processes or threads. The most important resources in computing are
processor cycles, memory and bandwidth, but in principle, anything that can be
looked up and referenced can be shared. Management of such software resources
becomes an issue when either:

o The resource requires exclusive access to another (physical) resource such
as memory, processor cycles, communication hardware etc.

¢ The number of clients that concurrently use it in a distributed system can
increase without limit.

2 Context

Resource management typically involves a tradeoff between time and space us-
age. Time is traded for space by sharing. Space is traded for time by replic-
ation. Both sharing and replication may introduce an extra cost to maintain
consistency. Consistency of shared resources is usually maintained by carefully
synchronising access to it, for instance by a semaphore or monitor. Consistency
of replicated resources is maintained by synchronising the state of each copy of
the resource.

2.1 Coping with growth

When the number of concurrent users of a resource grows, there are basically
three strategies to cope with such growth:

Reconfigure Adding more memory, or use a faster CPU, or add more band-
width can solve the problem. This is usually not done automatically, but
the software should be configurable to allow it to make use of more or less
hardware resources. Reconfiguration can be done statically at compile

1Permission is hereby granted to copy and distribute this paper for the purpose of
the EuroPloP2000 conference



time by changing parameters in the code. But it is often preferable to
allow dynamic reconfiguration, by setting parameters at run time. For in-
depth discussion of reconfiguration the reader is referred to [Sommerlad,
1999.

Multiplex Requests from different clients are sequenced: while one client uses
the resource, other clients wait. An obvious disadvantage is that response
times increase, which may be unacceptable for interactive applications.
Another disadvantage is that processes may get blocked indefinitely be-
cause of deadlock or live-lock, causing failures that must be dealt with.

Replicate Replication increases concurrency as operations proceed independ-
ently in each replica. Replicated services usually share some underlying
resources, so that speedup is never proportional to the number of replicas.
A second benefit of replication is that the replica is often located closer to
the client, so that access is faster and less bandwidth is consumed. This
is usually called caching.

There exist many policies for replication and sharing. Replication is either
synchronous or asynchronous. In synchronous replication updates to a resource
are applied to all replicas atomically. Asynchronous replication has no such
atomicity guarantee but is more scalable [Gray et al., 1996]. There exist many
techniques and algorithms for synchronising replicas asynchronously.

Sharing policies are either optimistic or pessimistic. Optimistic sharing does
not block processes when accessing a shared resource, but will abort any op-
eration that could cause an inconsistency. Exclusive locking is the most basic
pessimistic policy. More advanced sharing methods allow multiple concurrent
readers. In general more complex pessimistic policies allow more concurrency
by taking into account more knowledge about the semantics of the operations.

2.2 Architecture

Resource management has an important impact on the (distributed) archi-
tecture of applications. Layered architectures [Mowbray and Malveau, 1997;
Buschmann et al., 1996], in which each layer provides services to a layer at a
higher level of abstraction, is useful to manage the complexity of (distributed)
systems. In such systems the lower layers deal with resource management. This
goes for the classic three-tier client-server system, but also for protocol stacks
where the bottom layers manage physical connections.

For instance, a two-tier client-server application may present problems of
scalability if clients interact immediately with a database using SQL. As the
number of concurrent clients grows, the server may be overwhelmed. One solu-
tion is to switch to a three-tier or multitier application architecture where the
interaction with the database is encapsulated in a server-side middleware layer.



2.3 Forces

There are three conflicting approaches to problems in hardware and software:
sharing, isolation and replication. Sharing is done by replacing the shared ob-
ject with a name or an address — a token that defines a method for looking
up the actual resource. Replication is providing each client with a copying of
the resource. The difference between sharing and replication is illustrated by
parameter binding mechanisms in languages like Pascal. Within the confines
of structured programming, the semantics of copying and referencing are much
more clear-cut than they are in an object-oriented setting. Both sharing and
replication can lead to inconsistency. When inconsistency gets in the way, we
must move away from these by isolation in the temporal domain: synchronisa-
tion.
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Figure 1: Overview of Forces

Figure 1 relates these approaches to the conflicting forces they resolve:
scalability, concurrency and consistency. We want to maximise all three, but
must strike a compromise. More isolation means less concurrency, because lock-
ing will exclude concurrent access to resources. More replication means less
consistency, because as each copy may be modified independently. More shar-
ing means less scalability, because shared resources get overwhelmed as the
number of clients grows.

2.4 Roadmap

Figure 2 shows the patterns presented in this mini pattern language in rela-
tionship with the main forces. Each pattern represents a hot-spot allowing an
implementation to vary along an axis in this three-dimensional solution space.

The Handle/Body patterns discussed in [Coplien, 2000] (especially Counted



Body) allow one to control how a resource is shared or replicated, for instance by
allowing multiple clients to share one resource until one updates it. Synchroniser
allows one to vary the level of sharing versus isolation of the resource by temporal
synchronisation. A Resource Pool allows one to control sequential isolation
versus replication by having a pool of equivalent resources, forcing clients only
to wait when all resource are checked out. A pool of size one corresponds to
sequential isolation, while a very large pool is equivalent of replication.

Transactions impose constraints on the order in which operations are applied
to shared resources. There are basically three flavours of transactions: Optim-
istic Transaction relies on sharing the resource and detecting nonserialisability;
Two-Phase Locking relies on locking to guarantee serialisability; Multiversion
Two-Phase Locking uses replication to increase concurrency in locking proto-
cols.

TRANSACTION

Figure 2: Overview of Forces and Patterns

3 The Wrapper Ideom

Many problems in software are solved by adding an extra indirection. This is
especially true for resource management. A well-known ideom is the Wrapper
ideom (also known as Handle/Body [Coplien, 2000]). A wrapper is an object that
holds a reference to the actual resource. It may implement the same interface
as the underlying resource by delegation, or it may use another mechanism to
make it appear as the underlying resource {e.g. by overloading the dereference
operator in C++).

Wrappers are used for a number of different resource-management applica-
tions:



Pattern Name

Context

Lazy Initialisation A wrapper is created without creating or looking up the
actual resource. Only when the resource is first called upon does the
wrapper allocate or look up the resource. A variation of this the is a
future object, which represents the result of a computation before it is
available.

Garbage Collection Garbage collection or centralised deallocation is achieved
through wrappers, e.g. using reference counting. Combined with lazy
initialisation, wrappers can be used to implement fairly complex caching
mechanisms.

Synchronisation One application of a wrapper is to provide synchronisa-
tion for an underlying data structure. The wrapper is a Decorator
[Gamma, et al., 1995] for the resource, only adding synchronisation con-
structs such as a semaphore or monitor (e.g. Java collection framework).

Copying/Referencing Combined with lazy initialisation and synchronisa-
tion, a wrapper can be used to hide whether the underlying resource is
shared or not. This would allow an application to decide at run time
whether to use an extra copy of the resource or to share an existing one.
An application of this idea is the copy-on-update or Counted Body ideom,
in which the wrapper creates a new copy of the shared resource when the
client updates it.

Hiding Multiplicity A wrapper may hide the fact that the underlying re-
source is replicated and broadcast requests to each replica to implement
fault tolerant systems.

Access Control A wrapper may be used to separate the access control policy
from the actual resource.

In general, wrappers allow certain system or protocol issues to be factored
out as first class entities, increasing flexibility. A disadvantage is that the wrap-
per usually depends on the resource class, creating an inappropriate dependency
of the system perspective on the application perspective. For this reason, wrap-
pers should be modelled at a higher level of abstraction, either as a language
feature or based on reflection.

SYNCHRONISER

Multiple clients concurrently access shared resources. Some operations on these
resources require clients to have exclusive access.

There are basically three ways in which the semantics of a resource dictate
synchronisation:

Intra-Object: Critical sections of code (usually methods) that share variables
may not be executed concurrently to avoid inconsistent behaviour. Be-
fore such code fragment is executed it must acquire a semaphore that is
associated with the shared variable.



Client Transaction: Synchronisation depends on the semantics of the client’s
transaction, for instance when a client does a sequence of interdependent
reads and updates to a data structure. The client must explicitly acquire
and release exclusive access.

Inter-Object: Each method is guarded by a boolean condition that determines
if it is available to clients. Usually, only one thread is active in the shared
object, and messages to it are queued in a buffer. This paradigm allows
dynamic scheduling of messages, and it is transparent to distribution. It
is however not supported by many programming languages and usually
relies on middleware tools and code generation.

Problem How can clients flexibly synchronise access to resources?

Forces 1. The mechanisms used to provide synchronisation generally depends on the
support provided by the programming language, operating system and/or
available libraries. If portability is an issue, synchronisation code should
be factored out into separate components.

2. Embedding synchronisation within reusable classes, removes the respons-
ibility from the programmer, protecting against programmer error.

3. Protocols for dealing with deadlock, fairness or non-blocking resource ac-
quisition are difficult to implement using only the synchronisation con-
structs available in general-purpose programming languages.

4. Because of the inheritance anomaly [Crnogorac et al., 1997], subclassing
objects with built-in synchronisation may break the synchronisation of
inherited behaviour, which may limit the reusability of these classes.

Solution Avoid mixing synchronisation code with business logic in reusable classes.

Use the Decorator pattern [Gamma et al, 1995] to add synchronisation
to a shared resource, so client code can use it transparently. Only for client
transactions, the client must explicitly demarcate transaction boundaries by
calling a transaction manager object.

Using separate Semaphore abstraction can be used to guarantee language
and system independence. It also guarantees more flexibility to allow for dead-
lock detection and fair scheduling. Figure 3 shows a diagram of a possible class
structure.

Collaborations 1. In case of a client-transaction, the client first creates a transaction, and
locks the resource through that transaction.

2. A client makes a request to a synchronised resource.
3. Depending on the type of synchronisation:

Critical Section: The method first calls the semaphore to acquire it. If
it is unavailable, the method blocks. Then, the corresponding method
of the actual resource is called, and the semaphore is released.
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Figure 3: Synchroniser Structure

Client Transaction: The decorator does nothing more than assert that
the shared resource is enlisted by the current transaction. If not,
there must be a programmer error, and a run-time exception is raised.
Otherwise, it calls the corresponding method of the actual resource

TransactionM anager

and returns the result.

Guarded Method: The called method is reified® and enqueued on a
message queue with its parameters. The queue returns a placeholder
object that will contain the result when it becomes available, and

The thread then blocks on the semaphore.

the queue has processed the message the semaphore is released, and

the decorator can return the result. The message queue has its own
thread of control, calling available methods and rescheduling unavail-

a semaphore.

able methods.

4. The semaphore may cooperate with a deadlock detector to determine

whether or not granting the lock would create a deadlock.

?Reification is conversion to an object. The method-object may be represented simply
by its name, by an object of the language’s reflection system, or by a Command object

[Gamma et al., 1995].

When
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The use of this synchroniser pattern has the following consequences:

1. Synchronisation and business logic are separated and stand a better chance
of being portable and reusable.

2. The synchronisation strategy can be easily changed, even at run-time,
allowing more flexibility.

3. For transactional resources, the decorator can assert that the resource was
properly locked before it is used.

4. By explicitly modelling semaphores instead of using the programming lan-
guage’s synchronisation primitives, it is easier to experiment with different
mechanisms to avoid live-lock and to detect deadlock.

1. Programming low-level synchronisation primitives is difficult and error-
prone.

2. There is considerable extra work in writing the extra classes needed.

3. Changes to the resource class also impact the synchronisation decorator
classes. A practical solution to this problem is to automatically generate
these classes based on e.g. IDL interface descriptions.

o The ACE [Schmidt, 1995] toolkit provides C++ implementations of sem-
aphores, guards and events.

¢ Smalltalk has explicit classes, such as ProcessScheduler, Semaphore and
SharedQueue to flexibly manage communication between processes.

RESOURCE PooL

A server process handles requests for an unlimited number of clients, using
limited resources, such as database connections or server CPU time.

How can we flexibly control concurrent access to stateless server resources?

¢ Simply allocating new resources by request of the clients may overwhelm
the server, slowing down overall progress.

¢ The number of concurrently handled tasks must be large enough to fully
utilise the server.

Resources are stored in a resource pool. A client can check a resource out, use
it, and check it back in. When resources are all checked out the client is blocked
until one becomes available.

Because a client may break or invalidate a resource the resource pool must
validate the resource before handing it to a client. If found invalid, it is replaced
by a new resource.
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ResourceAllocator

+allocate(key:Object):Object

+free(res:Object)
Resour cePool
Resource | pool Key:Object ResourceValidator
0.n
+operation() +checkOut():Resource +validate(r:Resource):boolean
+checkln(r:Resource)

Figure 4: Resource Pool Class Structure

Figure 4 shows the structure of the solution, separating the roles for allocation
and validation into separate classes.

The resources cannot maintain state in between acquisitions: they are returned
in their original state, or are reset by the pool on their return. The only state
change supported is invalidation: a thread may be invalidated if it is killed by its
task; a database connection may be invalidated if the connection to the server
was temporarily lost.

¢ The number of concurrently available resources can be adapted dynamic-
ally for optimal performance.

o Resources are preallocated, and acquiring one from the pool takes very
little time.

¢ If no conversational state is maintained in between calls of a single client,
a wrapper can be used that acquires and releases the resource for each
method call, hiding the resource pool from the client.

A typical example of a resource pool is a thread pool in a Web server. Each
client request is handled by a thread from the thread pool. By limiting the
number of concurrently handled requests the amount of memory, CPU-time
and file handles used by the server can be kept below acceptable bounds.

A task thread object is an active consumer of tasks. To get a task to be
executed, an idle task thread must be checked out of the resource pool. When
the task is finished, the thread is checked back in. This provides a simple way
of configuring how many threads can be active at the same time. An example
sequence diagram is shown in Figure 5.

e Thread pooling is often used in Web servers such as the Apache Web
server.

¢ Enterprise Java Beans specifies a type of components called Session Beans
that maintain no conversational state between clients so that can be pooled
dynamically in the server.
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Figure 5: Task Thread Pool Sequence Diagram

¢ The ACE framework supports pooling for both threads and heap memory
management.

Pattern Name TRANSACTION
Context A number of concurrent processes perform operations on shared resources.

Problem How can we ensure that subsequent operations are performed atomically so that
other processes cannot see intermediate (inconsistent) states of the resources?

Forces ¢ By exclusively locking the shared resources a transaction can force other
transactions to wait. However, this could constrain concurrency too much
and increase the risk of deadlock and live-lock.

¢ Sharing constraints may vary:

— The most strict is serialisability, which means that the accumu-
lated result of multiple concurrent transactions is guaranteed to be
identical to that of a serial execution of those transactions.

— A less strict constraint is repeatable read or session semantics: each
client only sees consistent data but clients may concurrently perform
updates. Only updates from the last client to commit persist.

Solution Depending on the nature of the resource, the transaction and the expected
amount of contention, choose one of the following patterns:
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Optimistic Transaction aborts operations that jeopardise serialisability without
blocking. Use only if contention is low or combined with other techniques
that avoid conflicts.

Two-Phase Locking exclusively locks resources when read or written and re-
leases locks on commit. Locking creates a risk of deadlock.

Multiversion Two-Phase Locking copies resources before they are updated,
and at commit time consolidates updates in a way that guarantees serial-
isability. Multiple reading transactions can coexist with a single writer.

Each of these solutions achieves a different balance of concurrency, con-
sistency and scalability by using different amounts of sharing, isolation and
replication, as shown in Figure 2.

Consequences Flexible transaction abstractions provide fine-grained control over how the
mechanisms of replication and locking are used while preserving transaction
correctness.

However Transactions usually imply the possibility of failure, e.g. because of deadlock,
meaning that participating operations must be aborted and undone.

Known Uses ¢ Transactions are supported by most relational and object-oriented data-
base management systems.

e Sun’s Java Transaction API specifies interfaces between a transaction
manager and the parties involved in a distributed transaction system: the
resource manager, the application server, and the transactional applica-
tions.

e The Microsoft Transaction Manager is a well-known middleware product
that supports (distributed) transactions.

Pattern Name OPTIMISTIC TRANSACTION

Context A client is performing a sequence of operations on a shared resource, but con-
current clients may be updating the same resource, causing inconsistency.

Problem How can we detect that a shared resource was updated by another client?

Forces ¢ If contention for the resource is expected to be low, it may not be worth-
while to invest a lot of programming effort to enforce serialisability by
locking.

¢ Locking has a tendency to create deadlocks, which have to be dealt with.

¢ Copying the resource may be a solution, but that could be an unreasonable
expense if contention is low.
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During the transaction both the resource and the client keep track of a number
that changes in a predictable manner with each update, for instance a simple
count of the number of updates. At the start of a transaction, the client copies
it and before each update, the client checks that the resource’s number is what
it expects it to be. If another client updated the resource concurrently, the
numbers don’t match and an exception is raised.

¢ Consistency and serialisability are guaranteed.

¢ No locking is required at all, if the updates and access to the update count
are implemented with atomic, non-interruptible instructions.

¢ No copying is required.
e There is no risk of deadlock or live-lock.

Concurrent access will often result in exceptions. Partially completed trans-
actions cannot be undone, unless operations are logged. Therefore concurrent
access will often be regarded as a programming error, and force the program-
mer to come up with a solution that avoids it. Alternatively, if transactions are
idempotent they can safely be retried.

Java 2 collection framework uses this mechanism to ensure consistency between
collections and their iterators.

Two-PHASE LOCKING

Clients are concurrently performing operations on a shared resource. The re-
sources represent important data that must remain consistent and updates may
not be lost.

How can we ensure serialisability of transactions?

o If contention for the resource is expected to be high, it may be worthwhile
to invest programming effort to enforce serialisability by locking.

¢ Locking has a tendency to create deadlocks, which have to be dealt with.
¢ Copying the resource may be difficult because of its size or nature.

Set up a two-phase locking scheme. Clients can only access the resource in the
context of a transaction, which is associated with the current thread. Clients ex-
plicitly call the transaction to lock the resource, and the transaction keeps track
of the locks. When the client commits the transaction, all locks are released.

Serialisability is guaranteed if no client releases any locks before acquiring a
lock. The transaction object verifies this constraint.

Differentiating between read-locks and write-locks or otherwise introducing
knowledge of the semantics of the operations may increase concurrency. For
instance, read-locks can coexist with other read-locks.

12



Consequences

However

Known Uses

Pattern Name

Context

Problem

Forces

Solution

o Serialisability is guaranteed.
¢ No copying of resources is required.
¢ Locking reduces concurrency.

e With high contention, the risk of deadlock increases. The number of dead-
locks (per second) in a distributed system is very sensitive to the duration
of transactions and the number of resources locked by each transaction®.

¢ When deadlock occurs, it must be detected and the transaction must
be undone. To enable undoing of operations, the Command pattern
[Gamma et al., 1995] can be used to log and undo operations of abor-
ted transactions.

Most database management systems use two-phase locking to implement trans-
actions.

MULTIVERSION Two0O-PHASE LOCKING

Client are concurrently performing operations on a shared resource. The re-
sources represent important data that must remain consistent and updates may
not be lost.

How can we ensure serialisability of transactions?

¢ Two-Phase Locking causes queries to lock large regions of data for long
periods of time, causing update transactions to suffer long delays.

o If copying the resource is easy, clients can be handed a copy of the resource
that each can use concurrently.

Resources are accessed through a separate handle or wrapper, using the Decor-
ator pattern [Gamma, et al., 1995]. A client must explicitly call the transaction
to acquire a handle for the resource. The transaction holds an exclusive lock
on each handle. The handle is either a read-only handle or a read-write handle,
depending on the type specified by the client. Many read-only handles may
exist for a given resource, but only one read-write handle. Clients requesting a
read-write handle that is in use are blocked until it becomes available.

When a method is called on the handle, the handle checks that it exists in
the current transaction, raising an exception if not. Read-only handles also raise
an exception when a mutator method is called on them.

When a mutator method is called on a read-write handle, the handle creates
a new copy of the resource and delegates all subsequent messages to that copy.

. . . 5
3In [Gray et al., 1996] the deadlock rate is estimated to be TPSXACZ‘Z%?;ZG;;ACMOM for

a system performing T PS transactions per second, each performing Actions operations, each
taking ActionTime seconds.
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When the client commits the transaction, the transaction acquires an ex-
clusive lock on all the read-write handles it handed out, and on all read-only
handles for the updated resource. These handles are locked in a fixed order de-
termined by the resource identities, in order to avoid deadlock. The transaction
then unifies all modified copies of the resources with the original version, either
by updating them with the modifications, or by simply replacing the original.
Finally, all locks are released.

Structure Figure 6 shows a possible class structure for this pattern.

Consequences

However

Resource TransactionM anager
+inspect() +currentTransaction(): Transaction
+mutate() +getTransaction(): Transaction

%&el %ate
Handle
Semaphore —1
+inspect()
+mutate() 0Vn
Transaction

+openRead(key:Object):Handle

ReadHandle WriteHandle +rollback()
+rollbackOnly()

+inspect() <*//ﬂn$e€%9/”<> +prepare()

+mutate() +mutate() +commit()

Figure 6: Multiversion Two-Phase Locking Class Structure

Multiple clients can concurrently read a resource.
One client can update a resource concurrently with other readers.

There is more concurrency and less risk of deadlock than with simple
two-phase locking.

No operations must be undone when a transaction is aborted. The up-
dated copy can simply be discarded.

Copying of resources can be combined with client-side caching in distrib-
uted systems.

Copying the resources and their data requires extra memory.

Committing requires a transaction to wait for all other transactions that
have read the resources that it has updated to complete first.

Failure because of deadlock can occur during commit.
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Known Uses Multiversion two-phase locking has been incorporated in various relational data-
base management systems, among which Prime DBMS, DEC Rdb/VMS and

Interbase.
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