Virtual Machines and Abstract Compilers

Towards a Compiler Pattern Llanguage

Julio Garcia-Martin Miguel Sutil-Martin
Universidad Politécnica de Madrid!.

Abstract

Because of the increasing gap between modern high-level programming languages and existing
hardware, it has often become necessary to introduce intermediate languages and to build virtual
machines on top of the hardware. This paper describes the VIRTUAL MACHINE and the
ABSTRACT COMPILER patterns, a proposal that captures the essential features undedying the
compilation processes based on staging transformation of virtual machines. Having as a support the
VIRTUAL MACHINE pattern, we set out the task of compiling as a stepwise-refinement process
guided by the ABSTRACT COMPILER pattern, so that the piecemeal acquisition of high-
performance properties is posed in terms of relationships between intermediate virtual machines.
FEach phase during the compilation makes explicit some new features that are added to the global
compilation process. The equivalence between one machine and the next is preserved though out the
process.

1. Introduction

As 1s well known, the Java Virtual Machine (JVM) is an abstract software-based machme that can operate over
different microprocessor machines (i.e., hardware independent). Designers of a JVM must comply with the
specification of the JVM and make the necessary bridge from the JVM virtual scene into concrete operating
systems and microprocessors. This behind-the-scene bridge allows the software developerts to "Wite Once, Run
AnyWhere" [1] because the JVM must behave the same regardless of the underlying microprocessor according
to standard specifications of JVM [17].

Though a big success up to the moment, the usage of virtual machines s far from being a new issue. Long
before the boom of Java, virtual machines had been effectively used as intermediate or low-level architectures
suitable for supporting serious implementations of a wide variety of programming languages, including
imperative, declarative (Le., functional and logicz) and object-oriented programming languages [5]. The virtual
machines provide several desirable features such as portability, code optimizations, and native machine code
generation. On the other hand, their simple structure makes them suitable for analysis and experimentation.
Unfortunately, the structure of architectures called virtual machines varies widely, depending in part on the
language being described and the representation of source programs as data.

The gap between modern high-level programming languages and existing hardware makes necessary to
mtroduce intermediate languages running on virtual machines. However, the gap could be often so large
that 1t 1s either hard to see how the source language relates to the intermediate language or, alternatively,
how the intermediate language relates to the hardware. The Figure 1 centers the question showing a
snapshot of the common compilation/execution scenario for a Java program.

1 LSIIS Department, Facultad de informatica, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain. Email: juliog@fi.upm.es
2 Prolog [9] or SML [8] provide good examples of high-performance programming languages implemented by virtual machines.

Copyright 0 2000, Julio Gareia & Miguel Sutil, Permission is granted to copy for the EuroPloP 2000 Conference. All other rights reserved.

1. Furstly, the process requires the design of an intermediate-level machine (JVM) from the Java operational
semantics, and a Java compiler to translates Java code into JVM code,

2. Next, the JVM architecture must be mapped mnto a concrete hardware machimne (e.g;, Intel machine) and
JVM mstructions interpreted in terms of hardware mstructions.

Java JY M Intel

=

I Heap I

Mamary
oo methad

aaa :

Fiek

NilE

[k
[T

:

[g4 |

X = FH

Figure 1. Compilation/Execution roadmap for a Java program

The main objective of the paper is to state a pattern language for the design of compiler back-ends® for
programming languages, based on taking an operational semantics for a source language and defining an
intermediate-level target language and a compiler that translates the source language to this target language.
Thus, compiling can be planned as a stepwise-refinement process, so that the piecemeal acquisition of
high-performance properties is posed in terms of relationships of intermediate virtual machines. Fach
compilation step makes explicit some new features and changes that are added to the global compilation
process. The process contributes to getting a more abstract and systematic way of constructing compilers.
Furthermore, it improves the understanding of the process (compilation) and simplifies the task of
refining and reusing previous designs. It 1s likely that a (prototype) compiler can be extracted more or less
automatically as a side effect of the design of the virtual machine.

2. The Patterns Overview

This paper presents the VIRTUAL MACHINE and the ABSTRACT COMPILER patterns, a germ
proposal to set up a pattern language helps developers to obtain abstract compilers for programming

l Compile* | | l l Compile* |
- R
Virtual Machine Abstrgct Virtual Machine Virtual Machine AbStrf_"Ct Virtual Machine
(Phase 1) Compiler (Phase 2) (Phase N-1) Compiler (Phase N)
N N
| Decompile] I] I Decompile |
* Maybe specify

Figure 2. The VIRTUAL MACHINE & ABSTRACT COMPILER patterns interaction

languages, based on the virtual machine technology. The Figure 2 depicts the relationships between the
two patterns.

3 Thus, this work does not tackle the problem of converting program text into a token stream, lexical analysis, parsing, etc.

2

A short description of the patterns is presented now:

Name Description

Virtual How to define a common design to capture the essential features addressed
Machine | by virtual machines?

Abstract | Suppose we have described a compilation step, such that:

Compiler | 1. We have obtained a virtual machine from a previous one (by stepwise
refinement), and

2. We have defined a translation process from the origin language onto the
target one.

How to know (or test) if the compilation step 1s correct (i.e., it has the effect

that we expected!)?

3. The Virtual Machine Pattern

Intent

Define a common template to design virtual machines. The pattern captures the essential features
underlying a virtual machine as well as encapsulates them in separated loosely-coupled components.
Furthermore, the proposal encapsulates how components of a virtual machine mnteract.

Also known as

Abstract Machine, Abstract State Machine.

Applicability

Use the VIRTUAL-MACHINE pattern in any of the following situations:

o When we want to specify a virtual machine. The pattern provides a common skeleton to write high-
level specifications, allowing the programmer to pay more attention to specifying machine's
components instead of the whole machine. The specifications can be formal [3] or informal [17].

o When we want to compile a langnage using the virtual machine based technology. Virtual machines provided a
well-suited framework to describe compiling processes by stepwise-refinement of intermediate
languages (1.e., development "by protoryping"). In this process, relationships between intermediate
languages can be expressed in terms of the relationships of related virtual machines (see the
ABSTRACT COMPILER pattern).

o When we want to give a precise description for a compiling process by using the virtnal machine technology. As a
consequence of combining the two situations previously commented (see the ABSTRACT
COMPILER pattern).

o When we want lo test different instruction semantics in a virtual machine. It might be possible to define
different semantics for the same machine instruction.

o When we want o test different instruction sels in a virtual machine. It might be possible to define different
mstruction sets for the same virtual machine definition

o When we want to incorporate visnalization and debugging facilities to our virtual machine. The pattern's

3

participants are highly de-coupled. Therefore, the incorporation of new facilities will not

mntroduce obtrusive effects in the pattern.

Structure

The structure of the VIRTUAL-MACHINE pattern is shown on Figure 3.

Virtual Machine
State

Virtual Machine Virtual Machine
DataArea <4 Tnit() <P Program

Init() Transition() Init()

Stop () Stop() Stop ()

Currentlnst ()

Instruction

SI()

Figure 3. The VIRTUAL MACHINE pattern (structure).

Participants

A virtual machine may be defined as the union of two parts: (1) the static part, consisting of the
components related to the state, (1) the dynamic part, which 1s assoctated with the machine’s behavior.
The VIRTUAL MACHINE pattern encapsulates how static and dynamic components locate each of
these components into different participants.

The szate of a virtual machine consists of the following components:

1. DataArea: It declares an abstract interface for any data area configuration of the machine. It
declares two abstract operations:

* The Init operation, to determine the initial configuration for the data area,

* The Swp operation, to determine if the machine has achieved the final stage. If this final stage
does not depend on any data area configuration, then Stop returns zrze.

Concrete DataArea: It defines a concrete data area object. The concrete data area may be a simple
or a complex object structure (COMPOSITE). It implements the DataArea interface.

3. Prygram: It declares a common mterface for any assembler program. It includes, as an attribute, a
collection of Instructions. Besides, it declares four abstract operations:

* The Init operation, to determine the mitial configuration for assembler program,

* The Sp operation, to determine if the machine has achieved its final stage. If this final stage
does not depend on any program configuration, then the Stop returns Zrze.

* The LoadPryg operation is in charge of constructing the assembler instructions by reading the
target code from an input stream and translating textual representations into machine’s
mstruction.

* The Curventlnst operation returns the mstruction to be executed by the virtual machine.

4. Concrete Program: 1t defines a concrete program object, it 1s, a concrete instruction set and the
program counters needed. It has to implement the Program dealing with the definition of the
operations Init, Stop and CurrentInst.

On the other hand, the &ehavior 1s provided by some operations that operate over the static
components. These operations are part of the state definition and they will be responsible the
different states the virtual machine achieves during the execution of a gwven program. These
operations are described below:

7. State: It coordmates the interactions between the DataArea and the Program (such as a
MEDIATOR pattern [4]). It determines the machine's state. There are three different stages for
the State: initial, excecuting and final.

* The Init operation determines the initial state of the machine, just at the beginning of
execution.

* The Swp operation determines if the machine has achieved its final state.

* The Transition operation performs the program execution. So, the instruction pointed by the
program counter 1s executed. Transition starts the machine execution and continuous until
the final state has been achieved.

2. Iustruction: 1t defines an abstract interface for a machine’s instruction.

* The ST operation (semantic function) determines how the configuration of the machine
evolves after the execution of an instruction. The semantic function must be defined for each
mstruction in the instruction set.

3. Concrete-Instruction: 1t defines a concrete mnstruction for a concrete virtual machine. Concrete
mstructions are related to concrete data areas and concrete programs.

Collaborations

Three different scenarios model the three different states a virtual machine may reach during its
execution: gutialization, transition and ending. Figures 4, 5 and 6 sketches these scenarios.

Scenario 1: Inttialization

Client State DataArea Program

P

| H
e gl

H 4: Load Program |

'l

Figure 4. VIRTUAL-MACHINE pattern (collaborations I)

At this step, the virtual machine is initialized. As a result, both the DataArea and Program and are

initialized. The initialization of the Program is carried out by the Init operation, and mvolves setting
components with the initial values (i.e., program counters, array of instructions, etc.). Next, the
LoadProgram operation s executed, which loads the assembler program (i.e., to translate the text
representation of assembler instructions from the mputStream into instruction objects of the
program). On the other hand, components in the DataArea are mnitialized by the Init operation (t.e.,
the data registers or control registers, etc.).

Scenari1o 2: Transition

State Instruction Program DataArea

1: Trandtion

2: Current Inst
g H

3: 9 (this)

1 4: “modify program
. >

J 5: “modify data-area’

Figure 5. VIRTUAL-MACHINE pattern (collaborations II)

As said before, the Transition operation performs the machine execution. To do this, the operation
Transition requests from the program the mstruction to execute that is pointed to by the program
counter (Current|nst operation). The execution of the machine consists of executing instructions
until the ending condition. Each machine’s instruction 1s responsible of defining its own semantics.
So, each instruction provides the Sl operation, whose execution modifies the machine’s state (1.e., the
program and/or the data area). Therefore, depending on the nstruction the data area, the program
(or both) will be modified. Hach instruction semantic determines the order these modifications are
done.

Scenario 3: Ending

The ending stage for the machine’s execution is achieved when one of its two components (or both)
reach the ending condition (e.g., it 1s executed a concrete stop instruction, there 1s a data area
overflow, etc.). The Stop operation on the State asks to the corresponding Stop operations on the
DataArea and the Program, and combines their result. If the ending condition does not depend on
the DataArea (or the Program), then its Stop operation must return true as the result.

State Program DataArea

1: Stop

]

2:Stop

Figure 6. VIRTUAL-MACHINE pattern (collaborations IIT)

Consequences

The VIRTUAL MACHINE pattern presents the following advantages:

* Provide a general framenork to develop virtual machines and abstract compilers. The pattern allows the high-
level design of virtual machines, not imposing constraints about the sort of program languages to
compile to. Besides, the success of virtual machines also lies in their ability to obtain a good
performance by execution a highly specialized code. (See also consequences of ABSTRACT
COMPILER pattern).

o Test different semantics Jor the same tnstruction, without changing the data area and the program.

* Promote a methodology for a most systematic development of virtual machines and abstract compilers. By
separating data area, program and instruction semantics we introduce some design constraints
that force the user to follow a most systematic approach. (See also consequences ABSTRACT
COMPILER pattern).

* Offer a higher-level degree of encapsulation a re-use of virtual machine based developments. Semantics for virtual
machine instructions are encapsulated as classes.

* Reuse previous virtnal machine designs in new applications.

The Virtual Machine presents the following disadvantages:

* Yield to obtain inefficient implementations.

* Prowoke a communication overbead between State and Instruction.

Implementation

Consider the following implementation issues:

1. Conerete DataArea might be a complex object composition. Follow the same implementation issues as
in for the COMPOSITE pattern [4]

2. Defining the DataArea, the Program and Instruction as interfaces. For example, following the Java
conventions:

public interface Instruction
{
public void SI (State state);
public String Name ();
public int NumArgunents ();
public String ToString ();
public void Process (String args [])

7

public interface Program

{

public Instruction Currentlnst ();

public void Init ();

public boolean Stop ();

public void LoadProgram (Stream assenbl er Code) ;
}

public interface DataArea

public void Init ();
public boolean Stop ();
}

The Instruction provides methods to determine information about instructions (i.e., Name,
NumArguments), a method defining the instruction semantics (SI) and the method Process
that compiles the arguments of the assembler instruction. The State is an argument of S
operation and it 1s only used during this instruction.

The Program defines the common nterface for any assembler program in the virtual
machie. It defines an operation Currentlnst to access the instruction is currently being
executed. The LoadProgram method is in charge of building the instructions of the program
from the assembler code file.

3. DataArea, Program and Instruction as template paramerers. In a C++ like syntax, as follows:

class Instruction

.1

tenpl ate
cl ass Program <cl ass Instruction>

.1

cl ass Dat aArea

.1

tenpl ate
class State < class DataArea,
cl ass Program <l nstruction>>

{1
}
4. Omutting the State class. It is similar to the case of the MEDIATOR pattern [4].
5. Primitive operations. Some operations defined in DataArea, Program and Instruction are
primitive. Then, they must be overridden. For example, they could be declared as pure virtual
(in C++ conventions) or as part of an interface (Java conventions). The operations Init,
Transition and Stop 1n the State must be never overridden.

Sample Code

The following sample code shows Java implementations for some parts of the VIRTUAL-MACHINE
pattern.

1.

Firstly, we define the interfaces corresponding to DataArea, Program and Instruction (see the
Implementation section)

An alternative implementation of the Program may be done as an abstract class. In this case, some
extra functionality is provided (e.g., a program counter P and the set of instructions).

i mport Instruction;
i mport InstructionSet;

public abstract class Program

{
public int P;
private Vector program // A container of Abstractlnstruction
private |InstructionSet instSet;
public void Init ()
{
P = <<init program address>>;
Program = new Vector ();
public void LoadProgram (Stream assenbl er Code)
{
<< load instructions fromthe assenbl er code >>
public Instruction Currentlnst ()
{
return program Get (P);
}
public void Next ()
{
P++;
abstract public boolean Stop ();
}

3. The implementation of the State.

i mport Dat aArea;
i mport Program
i mport Instruction

public class State

{
private DataArea da;
private Program prog;
...
public void Init (Streams)
{
da.Init ();
prog.Init ();
prog. LoadPr ogram (s);
}
public boolean Stop ()
{
return prog.Stop () && da. Stop();
public void Transition ()
{
while (!'Stop ())
{
prog. Currentlnst().Sl (this);
}
}
}

4. The creation of a concrete State (say an M machine) is done by following the next sequence of
actions.

i mport Virtual Machi ne;
i mport WAM Factory;
i mport WAM_ I nstructionSet;

class M Cient

{

static public void main (String args []) throws | OException

Fi | el nput Stream target Code = new Fil el nputStream (arg [0]);

State machine = new State ();
machi ne. I nit (targetCode);
machi ne. Transition ();

Finally, we describe some examples of instructions in the M-machine’s instruction set. Let’s consider
how each of the following instructions implements its semantics (how the M-machine evolves) by
modifying the M_State (i.e., the M_DataArea and/or the M_Program).

2) The following Java code 1s associated with the instruction I of the M machine. The execution of
this mstruction (its semantics) provokes some changes in the M_DataArea and the M_Program.

public class | inplenments Instruction
IO
{}
public String Name ()
{
return “I1”;

public int NumArguments ()
return 1;
}
public String ToString ()
return Name() + “ “ + numVars;
public void Sl (State state)

M_DataArea M_da = (M_DataArea) state.DataArea();
M_Program M_prog = (M_Program) state.Program();

/I Implementation of | semantics

public void Process (String args[])
/I Proces the text representation of the instruction

/I arguments into an int value.
numVars = Integer.valueOf (args [0]).intValue();

b) Let us consider now, a new version of the above definiton of the I mstruction, mn order to
support visualizing facilities. For this reason, we redefine the SI operation as follows:

public class Viewl! extends Call

{
public void SI (State state)
{
super.Sl (state); /[Execute the Call semantics
state.notify () // Notify the change and redraw
}
}

10

4. The Abstract Compiler Pattern

Intent

Provide a2 common framework to design abstract compilers by stepwise refinement of virtual
machines. The task of compiling is planned as a piecemeal acquisition of high-performance
properties poses in terms of relationships between mtermediate virtual machines and translation
rules.

Also known as

Compiler Generator, Program Translator.
Applicability
Use the ABSTRACT COMPILER pattern in any of the following situations:

o When we want to spectfy an abstract compiler. The pattern provides 2 common formalism/schema (the
virtual machine) and a development technique (staged refinement) to write high-level
specifications. The specification may be obtained in several steps (i.e., several intermediate-level
machines) by defining the inter-machine compilation rules. The specification can be formal or
informal. The whole compilation process 1s obtained by composing the compilation rules
between intermediate languages (i.e., virtual machines).

o When we want to proof the compiler correctness. Given a stage of the refinement process, the equivalence
between two consecutive virtual machines provides a partial proof of compiler correctness. Then,
the complete proof can be obtained by composition.

o When we want to compile a programming language by using the virtual machine technology. The relationship
between an interpreter for a language and a compiler/executor pair for the same language can be
given informally in terms of separating computations of the mnterpreter: one performing
computations only on program structures (the compiler) followed by one performing
computations primarily on runtime structures (the executor).

o When we want lo test different alternatives to compile a language. Given a programming language, it is
possible to define different virtual machines to implement/interpret its semantics.

o When we want to construct emulators/ tracers for the execution of our programs. To emulate the execution of
a program forces us to incorporate visualization and debugging facilities to the compiling process.
As shown above, the VIRTUAL MACHINE is able to mnclude some of these facilities. On the
other hand, since the ABSTRACT COMPILER pattern behaves as a MEDIATOR between the
two virtual machines involved in a compilation phase, somehow it should be possible to connect
both wvisualizing and debugging mechanisms. In particular, it would be highly useful the
visualization could help us to get a visual confirmation/validation about the compiler correctness.

11

Structure

The structure of the COMPILER pattern is shown on Figure 7.

VM1 VM2
<«
Compiler
Init()
_ Transition() RuleSet
Client Stop() >———P»| CurrentRule 0O
Rule
matching()
rebuild() Instruction
createlnstructions() <—p@® S1()

Figure 7. The COMPILER pattern (structure).

Participants
The ABSTRACT COMPILER pattern consists of the following components:

1. VM7 (JU/M): It represents the source virtual machine.
. VM2 (Intel): 1t represents the target virtual machine.
3. Rule Ser (JVM2Intel Rule Ser): It represents the set of compilation/translation rules from a VM1
mstruction block into a VM2 instruction block. Given a VM1 instruction block, the CurrentRule
operation fetches the current rule to apply.

4. Rule (Iadd Rute): 1t declares a common interface to represent any compilation rule. A compilation
rule 1s defined as a pair (<Block_VM1>, <Block_VM2>), where

* <Block_VMI1> represents a block of VM1 imnstructions,

* <Block_VM2> represents a block of VM2 mstructions.
The operation createlnstructions constructs the Block VM2 from Block_VM1. On its patt, the
operation matching determines if the current state of the VM1 program matches with the rule.
The rebuild operation is responsible of reconstructing the VM1’s data area from VM2’s one.
Finally, the SR operation provides the semantics for the rule by gluing previous operations. As a
final remark, the operations createlnstruction and rebuild must be concretized each time.

5. Iustruction: 1t declares a common interface to represent a virtual machine's instruction. It is fully
defined in [4].

6. Compiler: 1t coordinates the interactions between VM1 and VM2 and describes a rule-by-rule
execution. It behaves as a MEDIATOR pattern [6]. The lifecycle of the Compiler component
covers three different phases (iwitial, transition and final) that are related to the following
operations:

* The Inir operation determines the initial state of compiling process by configuring the mitial
states of the VM1 and VM2.

12

* The St operation, to determine if VM1 has achieved its final state, in which case the
compiler execution stops.

* The Transition operation performs the compilation of the machine. It is defined as a while-
loop control structure; at every round of the loop the compilation rule pointed by the rule
counter (the CurrentRule) is executed. Transition starts at the initial machine's configuration
and continuous until the final state 1s achieved.

Collaborations

As described above, three different scenarios describe the Compiler execution: utialization, transition and
ending.

Scenario 1: Initialization

The mitialization of Compiler is done by initilizing both VM1 and VM2.

Client Compiler VM1 VM2

\ 1: Tnit

2: Init

|

Figure 8. The COMPILER pattern (Collaborations I).

Scenari1o 2: Transition

It performs the compiler execution in several phases:
1. Firsty, given the current VM1 program and Rule Set, translation selects the compilation rule to
execute.
2. Then, it interpretes the semantics associated to the rule on the target machine (VM2).

13

Client Compiler RuleSet Rule Abstract VM1 VM2
Instruction

1: Transition

2: prog.CurrentInstruction

y
1

3: CurrentRule _

U 4:SR

5: createInstruction

]

6: ST

7: "change state machine"

y

y
]

8: rebuild A

-]

9: "change state machine”

y
]

Figure 9. The COMPILER pattern (Collaborations II).

Scenario 3: Ending

Compiler’s execution ends when VM1 reaches its ending condition

Consequences

The ABSTRACT COMPILER pattern presents the following advantages:

* Provide a framenork to develop compilers by stepuise refinement of virtual machines.

* De-couple the relationships among the Abstract Compiler pattern participants. The Compiler Factory isolates
Compiler from concrete virtual machines (source and/or target) and specific rule sets. On its part,
the Rule Set behaves as an Abstract Factory [6]for the rule sets managed by the compilers.

* Provide a framenork to test different compilation strategies. The pattern makes exchanging compilation-
rule set easy, allowing the involved virtual machines to maintain independence of any concrete
rule set. The change of a concrete rule set re-configures the compiler.

* Prowide a framework lo test different compilation rules (compiling strategies) Jor the same virtual machines.
Because the compilation 1s encapsulated by the compilation rules (the SE operation), we can
redefine them without affecting to the virtual machines.

* Offer a hisher degree on the re-use of abstract compilers. In most of the cases, the resulting compiler, in
whole or i part, can be highly re-used in new developments.

* Promote a methodology for the systematic development of abstract compilers. By separating the participants of
compilation in components (i.e., source virtual machine, target virtual machine, rule set and rule
semantics) we introduce some design constraints that force the user to follow a more systematic
approach.

The ABSTRACT COMPILER presents the following disadvantages:

14

o Inefficent implementations.
o Commupication overhead between Compiler and Virtual Machines (VM1 and 1V MZ).

Implementation

Consider the following implementation issues:

* Creating concrete VM7, VM2 and Rule Set. For a better representation of components related in
the pattern, we may consider to use a Compiler Factory. Follow similar hints that those given
by the ABSTRACT FACTORY pattern [0].

* Concrete Rules might inwolve dealing with blocks of concrete instructions. Follow the same
implementation issues as in for the COMPOSITE pattern [0].

* Defining VM1, VM2 and Rule Set as interfaces. In the first case, follow the VIRTUAL
MACHINE pattern [4].

* Prputive operations. Some operations defined in Rule component are primitive. Therefore, they
must be overridden.

Sample Code

The following sample code shows Java implementations of the ABSTRACT COMPILER pattern applied
to the example shown in the Figure 1 (1.e., JVM to Intel compiler).

1. The implementation of the Compiler Factory:

i mport Virtual Machi ne;
i mport Rul eSet;

public interface ConpilerFactory

{
public Virtual Machi ne sourceVM ();
public Virtual Machi ne targetVM ();
public Rul eSet ruleSet ();
}

2. The implementation of the Compiler class.

cl ass Conpil er

{
public Virtual Machi ne sourceVM targetVM

public Rul eSet rul eset;

public Conpiler (ConpilerFactory factory)
{ << initialization of VMs and rule set>>}

public void Init (InputStreamtar) {
sourceVM Init (tar);
targetVM Init ();

public boolean Stop () {
return sourceVM Stop ();

public void Transition ()

{

Abstractlnstruction inst;

Rul e rul e;

while (!'Stop ())

{
inst = sourceVM Getprog().Currentinst();
rule = ruleset.CurrentRul e(inst, this);
rule.SR (inst, this);

}

15

} // Transition

}

3. The abstract class Rule provides a generic interface to define the translation of source machine
mstructions to target machine’s one.

public abstract class Rule

{
public Instruction instructions [];
public void SR (Instruction inst, Conpiler conpiler)
{
createl nstructions(inst, conpiler);
for (int i =0; i <instructions.length; i++)
{
instructions[i].SlI (conpiler.target);
}
rebuild (conpiler);
}
public abstract void rebuild (Conpiler conpiler);
public abstract bool ean matching (Instruction inst, Conpiler conpiler);
public abstract void createlnstructions(lnstruction inst, Conpiler conpiler);
}

4. The translation-rules corresponding to JVM-2-Intel compiler can be organized around the abstract
class JVMtolntelRule, as follows:

abstract class JVMolntel Rul e extends Rul e

{
public void rebuild (Conpiler conpiler)
{
rebui | dDa(conpi |l er);
rebui | dProg(conpiler);
}
}

5. Concrete JVMtolntel rules are obtained by subclassing:

class | addRul e extends JVM ol ntel Rul e
{ public boolean matching (Instruction inst, Conpiler conpiler)
pubi | c}voi d createlnstructions (Instruction inst, Conpiler conpiler)
{ instructions = new Intellntruction [4];
Intel DataArea ida = (Intel DataArea) conpiler.targetVM da;

Addr ess addl
Addr ess add2

= ida.register[AX].get Address(); //register acunul ator
= ida.register[DX].get Address(); //register data

i nstructions[0]
instructions[1]
instructions[2]
instructions[3]

new Pop (addl); // get operand 1 of stack
new Pop (add2); // get operand 2 of stack
new Add (addl, add2); // operand 1 += operand 2
new Push (addl); // put result into stack

6. We describe an example of the Intel mstruction .4dd.

class Add extends Intellnstruction

{
public void SI (Virtual Machi ne machi ne)

{
I nt el Dat aArea ida

I ntel Program i prog

(I'ntel Dat aArea) nmchine. da;
(I'ntel Program nachine. prog;

Term opl
Term op2

i da. get Value (arg[0]); /Il Get values from
i da. get Value (arg[1]); /1 arg[0] y arg[1]

16

opl. add(op2); /1 opl = opl + op2
i da. put Val ue (opl1, arg[O0]); /1 Put result in address arg[O0]
i prog.Inc(); /'l Inc pc

}

7. The JVMtolntel rule set derives from the RuleSet interface.

public class JVMolntel inplenments Rul eSet

{
Rule rule[];
static int n_rule = 30;
public RuleSetArray ()
{
rule = new Rul e[n_rul e];
rule[0] = new | AddRul e ();
...
public Rule CurrentRule (Instruction inst, Conpiler conpiler)
{
for (int i =0; !rule[i].mtching(inst, conpiler); i++);
return rulefi];
}
}

8. Below, it is sketched a client for the JVM2Intel Compiler:
class JVMIntel Conpilerdient

{
public static void main(String args[]) throws | OException
{
JVMRI nt el Factory factory = new JVM2Intel Factory();
Fi | el nput Stream JVM code =
conpil er = new Conpiler (factory);
conpiler.Init (JVM.code);
conpiler.Transition ();
}
}

5. Known Uses

The VIRTUAL MACHINE and ABSTRACT COMPILER patterns have been used to formalize and
implement an Abstract Compiler for the Prolog language [2]. As a result of this work, it has been obtamned
a multi-phase compilation process based on the virtual machine technology. Furthermore, we have found
the VIRTUAL-MACHINE pattern 1s well suited to easily include visualization facilities and debugging
mechanisms and facilities in a non-intrusive way [3].

Several commercial products focused on machine emulation, such as Virtual PC [10] and SoftWindows
[11], are able to execute programs compiled for MS-Windows over a completely different architectures,
such as MacOS. Thus, assembler programs thought to run on Intel processors can be executed (i.e., by
means of emulation) on a Motorola processor. This emulation may be seen as three-phase process: 1) the
run-time translation from Intel code to Motorola code, 2) the execution of Motorola code obtained from
the translation and 3) the reconstruction of Intel machine state from the new Motorola state. Therefore,
this kind of emulation software can be modeled as an ABSTRACT COMPILER pattern, taken as
VIRTUAL MACHINES the Intel and Motorola hardware.

With no doubts, declarative programming has meant for a long time the best example of an extensive use
of the virtual machine technology. As said in the introduction section, Prolog [9] or SML [8] are classic
examples of high-performance programming languages using virtual machines. However, the list of
declarative languages supported by the virtual machine’s approach has been dramatically increased during
the last years [12, 13].

17

As a final remark, the technique of compiler construction by staging transformation s in the vein of the
ideas presente here. Staging transformation were introduced in [14], as a general approach to separating
stages or phases of a computation based on the availability of data, with an mnmediate application to the
development of compilers from interpreters. This approach consider the task of automatically
construction mntermediate-level machine architectures and compilers generating code for them, given
operational semantics for source languages [15].

6. Related Patterns

The wortk presented in [7] explores the definition of a pattern language for building virtual machines.
Unlike, our proposal focuses on providing a higher-level design framework and not so much on
describing guidelines to obtain low-level implementation of virtual machine architectures.

The VIRTUAL MACHINE and ABSTRACT COMPILER patterns combine the following
patterns:

e The ABSTRACT COMPILER can be seen as a kind of VIRTUAL MACHINE, which state
is the join of VM1 and VM2 states and which instruction semantics are the semantics of the
translation rules.

* Compiler Factory and Instruction Set are ABSTRACT FACTORY patterns [6],

e The ST operation (in the Instruction class) and the SR operation (in the Rule class) are
variations of the STRATEGY patterns [0], and

e [Dinally, the Inmit, Transition and Stgp operations i the VIRTUAL MACHINE state and
ABSTRACT COMPILER state are clear examples of TEMPLATE METHOD patterns [6].

7. Conclusions and Future Work

Virtual machines provide an important stage in the efficient implementation of a kind of languages.
However, the construction of such machines and the implementation of high-level languages in them have
previously recetved little attention as (or under) a common framework. In our opinion, the most
important contribution of this paper 1s having outlined the framework to design abstract compilers by
step-wise refinement of virtual machines. This way, the constant parts from the varying parts of a virtual
machine have been clearly identified and de-coupled, as well as components involved mn the process of
compiling high-level programs. As a result, the translation/compilation has became a task of constructing
new lower-level machine architectures, and then, applying some translation rules to generate code for
these architectures. The emulation of a source program can be planned as the execution of the compiled
code (obtained dynamically) on a lower-level machine, and therefore, the compilation can be structured as
a process provided with methodological guidelines that help to get a most systematic development of
abstract compilers.

The Virtual Machine and Abstract Compiler patterns are still too complex. Thus, it is reasonable to split
them in a more refined set of patterns. Thus, the Abstract Compiler could be divided in two different
patterns that set up clearly differences between the translation and emulation processes. We think it is also
necessary to pursue a deeper study around translation rules and the functionality they should provide.
Actually, we feel translation rules could be expressed as well-formatted rewriting rules operating on the
machine’s state. Also, we haven’t vet faced how to tackle the mstruction loading and to structure the
refinement of data areas. Finally, a future version of a Compiler pattern language should include new
components that help us to cover the design of compiler front-ends. To this purpose, the work presented
in [16] seems to be a promising starting point.

18

Bibliography

[1]
(2]

[3]

[4]

[5]

[6]

[7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Armold & Gosling. The Java Programming Language. Addison-Wesley, Reading,
Massachusetts, 1996.

Garcia J. & Moreno JJ. Visualization as Debugging : Understanding/Debugging the
WAM, Automated and Algoritmic Debugging (AADEBUG'93), Lecture Notes in
Computer Science (LNCS 749), Springer-Verlag, 1993.

Garcia J. & Moreno JJ. A Formal Definition of an Abstract Prolog Compiler,
AMAST'93. Workshops in Computer Science, Lecture Notes in Artificial
Intelligence (LNAI), Springer-Verlag, 1993.

Garcia J. & Sutil M. The Abstract Machine: A Pattern for Designing Abstract
Machines. 6%, Annual Conference on the Pattern Languages of Programs
(PLOP'99), Monticello, Illinois, August 1999.

Goldberg A.J. & Robson D.: Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, MA, 1983

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns.
Elements of reusable object-oriented software. Addison-Wesley, Reading, MA,
1995.

Jacobsen, E.E. & Nowack, P. A Pattern Language for Building Virtual Machines. 2th
European Conf. Pattern Languages of Programming, Irse (Germany) , July 1996.

Reade, C, Elements of Functional Programming, Addison-Wesley, 1989.

Warren, D. H.D, An Abstract Prolog Instruction Set. Tec. Note 309, SRI
International, Menlo Park, California, October 1983.

Virtual PC 1.0 Mac-User Magazine, October 1997.
http: //macuser.zdnet.com/mu 1097/reviews/virtual.html

SotfWindows 95 for ~ Power Macintosh, =~ Mac-User ~ August 1996.
http://macuser.zdnet.com/mu 0896/ reviews/review09.html

WWW Virtual Library on Logic Programming

http://www.comlab.ox.ac.uk/Zarchive/logic-prog.html

WWW Virtual Library on Functional Programming
http://www.engr.uconn.edu/~jeffm/FuncProg/Papers/funcprog.html

Jorring, U. Scherlis, W. Compilers and Staging Transformation. In 3th ACM
Symposium on Principles of Programming Languges, 1989, pp. 281-292.

http: //macuser.zdnet.com/mu 1097/reviews/virtual.html

Hannan, J. Operatinal Semantics-Directed Compilers and Machine Architectures,
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4,
July, 1994

Bosch, J. Parser Delegation - An Object-Oriented Approach to Parsing. In
Proceedings of TOOLS Europe’95, 1995.

19

[17] Lindholm, T. Yellin, F. The JavaTM Virtual Machine Specification. Sun
Microsystems, Inc.

20

